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ABSTRACT

Gleason, Daniel. Ph.D., Purdue University, December 1988. Analytical Techniques
For Tracking Filter Implementation. Major Professor: Dominick Andrisani.

The objective of this study is the development and verification of nonlinear

and linear analysis techniques for aircraft tracking filter implementation.

The aircraft tracking problem has two distinct requirements. The first require-

ment is to accurately estimate the position of the aircraft at a present point in time.

The second requirement is to predict the position of the aircraft at a given future time.

Presently implemented tracking filters suffer from estimation and prediction accuracy

degradation from two causes. The first cause is the lack of measurement information

concerning the aircraft acceleration state. The second cause of error is attributable to a

modeling insufficiency since, typically, the tracking filter is provided with no informa-

tion concerning the system inputs.

This study addresses these two fundamental shortcomings to currently

employed tracking filters. First, a nonlinear analysis is presented. In this analysis, a

tracking filter that incorporates aircraft orientation in both the system model and meas-

urements is compared to a tracker that uses only standard radar measurements. The

addition of the orientation information enhances the tracking filter performance

because, in general, aircraft orientation is strongly correlated with the acceleration of

the aircraft. Improved position estimation and prediction is demonstrated with the

tracking filter that incorporates orientation information.

The second fundamental cause of tracking filter errors (i. e. unknown system

inputs) is investigated using linear analysis techniques. First, an analysis technique is

developed using frequency and time domain methodologies for determining tracking

filter gains for a system with unknown exogenous inputs. An analysis technique is also

developed to determine the difference in tracking filter error covariance histories using ,

variable structure models4 This leads to a means for calculating process noise levels to
achieve error covariance equivalent models. In addition, a three state, constant gain

discrete tracking filter is investigated to determine filter gain behavior as a function of
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process and measurement noise levels, and measurement sampling times. A limiting
analysis is presented to determine the asymptotic behavior of the filter gains.



CHAPTER 1
INTRODUCTION

Target tracking and trajectory estimation has received a great deal of attention

over the past number of years. The continuing and ongoing research effort being per-

formed by both military and civilian agencies provides an indication of the importance

of this topic, and the need to improve and extend presently implemented methodolo-

gies.

1.1 Problem Definition

The aircraft tracking problem has two distinct requirements. The first require-

ment is to accurately determine the inertial position of the aircraft at a present point in

time. The second requirement is to predict the inertial position of the aircraft at a

given future time. Knowledge of the future position is needed for civilian aircraft col-

lision avoidance systems. Military anti-aircraft systems need predicted future positions

in order to calculate projectile lead angles. Obviously, the accuracy achieved in

predicting the future position is dependent upon the accuracy achieved in estimating

the present position, velocity, and acceleration. If the estimation of these present

kinematic values is poor, it is unlikely that estimates of future position will be satisfac-

tory.

Difficulties arise in aircraft tracking due to two problem areas. First, the air-

craft flight regime can vary from steady level nonmaneuvering flight to very unsteady

highly maneuvering flight. Inherently, trackers that perform well against non-

maneuvering aircraft perform poorly against maneuvering aircraft and vice-versa. It is

difficult to design trackers that perform well against both maneuvering and
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nonmaneuvering aircraft. Second, trackers are provided with radar measurements (typ-

ically range, azimuth and elevation), but are provided with no information concerning

vehicle velocity, acceleration, or pilot input. Without this information, the ability to

estimate present and future aircraft position is severly degraded.

To overcome the problems described above, this research will examine a

number of approaches and techniques to minimize these problems. Both nonlinear and

linear analysis techniques will be explored.

The use of nonlinear techniques is necessitated by the fact that tracking a six

degree of freedom maneuvering aircraft is a highly nonlinear problem. The nonlineari-

ties are introduced in two ways. First, radar measurements are generally presented in

spherical coordinates, while the differential equations governing the aircraft motion

use a body-fixed cartesian coordinate system. Also, when orientation information is

used, nonlinear direction cosine matrices are needed to transform force vector relation-

ships between inertial and body coordinate systems. The introduction of these non-

linearities make it difficult to apply many standard engineering analysis techniques.

Therefore a linearization of the problem is performed, and linear analysis techniques

are developed and applied in order to make meaningful conclusions concerning tracker

performance. The approach taken herein is to examine the complete nonlinear track-

ing problem, and then to use linear models to develop general methodologies to gain

insight into the nonlinear problem development.

1.2 General Research Areas and Objectives

The research examines what improvements may be accrued if standard radar

measurements are augmented with aircraft orientation (i.e. pitch, roll, and yaw) meas-

,,rements. The concept behind this assumes that the pilot maneuvers the aircraft by

orienting the aircraft to generate appropriate aerodynamic forces. There exists a strong
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correlation between aircraft orientation and aircraft aerodynamic forces and thereby

aircraft acceleration. For example, if the pilot wants to execute a climbing or diving

maneuver, he pitchs the aircraft up or down as needed. When performing a turn, the

aircraft is banked so that aerodynamic forces are oriented to produce the turning trajec-

tory. Obtaining information about the pitch angle and/or bank angle will enhance

tracker estimation, and in particular prediction performance.

This work does not investigate how the tracker obtains the orientation infor-

mation. It assumes that the measurements are available from an on-board aircraft tran-

sponder as might be the case in a commercial aircraft. The development of surveillance

radar mode S systems allows for the transmission of several airborne measurements to

ground stations [Lefas; 19841. Another possibility is to determine the aircraft orienta-

tion angles using advanced sensors on the tracker.

The nonlinear analysis requires numerous computational simulations to

achieve satisfactory results for all filters. This work generated a number of questions

concerning the optimization of the tracker designs. These questions dealt with tracker

accuracy and robustness, Kalman filter tuning, and methods to optimize filter perfor-

mance with incomplete tracker models. Addressing these questions with nonlinear

Kalman filters is extremely difficult, since tracker performance is based on the particu-

lar aircraft trajectory that is selected. Therefore, follow on research is performed on

linear models to gain insight into tracker robustness and filter tuning.

The linear aspects of this research explores four areas that are used to gain

insight into the nonlinear problem. First, a simplified linear model that includes orien-

tation information is developed. Many simple aircraft trackers are founded on treating

the aircraft as constant velocity or constant acceleration point-mass vehicle. The

tracker is provided with only noise corrupted position measurements. The tracker has

no information concerning the pilot inputs or vehicle attitude. This lack of information
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severly restricts the accuracy that is achievable in estimating the current aircraft posi-

tion or predicting its future location. In the research presented here, the point-mass

models are then modified to include aircraft orientation information, and noise cor-

rupted aircraft orientation measurements. Again, the aircraft inputs are not provided to

the tracker; however, since pilot inputs are initiated to change the aircraft orientation, a

substantial improvement is seen in estimating and predicting the aircraft's position. In

addition, the performance of the linear models with orientation information are found

to be far less sensitive to whether the aircraft is in steady state level flight or in a highly

maneuvering regime.

The second linear research area investigates a means for designing observers

for systems with unknown exogenous inputs. In general, system observers are used to

estimate state time histories for systems with an incomplete set of state measurements

and unknown initial conditions. The design of the observer under these conditions is

predicated on having a known model of the system and complete access to the system

exogenous inputs. Under these circumstances, the performance of the system observer

is well known and documented [Luenberger, 1971]. Adequate observer performance

requires that system inputs be made available to the observer, and this is not the case

for tracking maneuvering aircraft. However, performance improvements can be made

by augmenting a control input model to the observer and selecting the observer gains

to minimize error time histories. Observer performance is demonstrated for this

methodology. The methodology is developed for a general linear dynamic system, and

is not restricted to only the aircraft tracking problem. The methodology is developed

for both continuous and discrete systems, and can be applied to any linear system with

unknown exogenous inputs. An alternative application is the area of fault detection and

isolation for failed/degraded aircraft control affectors [Gleason and Andrisani; 1986].
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The third linear research area examines an error covariance analysis technique

for variable order tracking filters. In general, an error covariance time history analysis

for variable order filters is performed by exercising both models separately, and then

differencing the individual error covariance histories. A more efficient method is to

take advantage of the structural similarities between the models. By using appropriate

matrix partitioning and differencing the Ricatti matrix differential or difference equa-

tions that govern the error covariances, a single equation can be obtained that describes

the difference in the error covariance histories between a higher order and reduced

order model. In addition, the resulting single matrix equation can be used in the

development of error covariance equivalent models. Through the judicious selection

of process noise levels, it is possible to achieve equivalent state error covariances for

matching states between higher order and reduced order models. This leads to

improved reduced order models with increased savings in computational resources.

Also, tuning the process noise levels to account for reduced state dimensionality pro-

vides a quantitative measure of the effects of structural model modifications. The abil-

ity to achieve error covariance equivalent models also leads to a means for fairly

evaluating tracker models of differing orders. A frequency domain technique for car-

rying out a variable order tracking filter analysis is provided by Andrisani [19851.

The fourth research area investigates steady state Kalman filter gains for

discrete tracking filters. This is undertaken to develop insight into filter gain behavior

as a function of process noise and measurement noise. The results demonstrate the

application of a symbolic manipulation software package for solving complex

engineering problems.
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1.3 Report Organization

Chapter 2 provides the technical background and foundational analysis tech-

niques used herein. A descriptive literature survey is presented. This is followed by

the technical development for Kalman filter applications. First, the equations describ-

in- the linear Kalman filter are presented. Then the nonlinear or extended Kalman

filter (EKF) equations are presented.

Chapter 3 discusses the nonlinear Kalman filters that are used in trackinc

maneuvering aircraft. Initially the radar-only tracker is discussed. For the radar-only

tracker, a six state and nine state model are used to track a fighter aircraft performing a

5-g coordinated turn. Then aircraft orientation information is added to the system

model and the system measurements, producing a twelve state and fifteen state track-

ing filters. Again these tracking filters are used to estimate and predict aircraft inertial

position for an aircraft performing a 5-g coordinated turn. These results are then com-

pared to the earlier results obtained by the six and nine state trackers. A number of

sensitivity studies are undertaken to determine the criticality of a number of the noni-

linear tracking filter parameters.

Chapter 4 describes the implementation of a linear Kalman filter for systems

with and without orientation information. A 3-state (a -x3- ,), and 4-state(X -6)

filters are analyzed.

Chapter 5 develops the observer augmentation technique that is used to

enhance observer performance when unknown exogenous inputs exist. The technique

is derived for both continuous and discrete systems. An application is demonstrated

with both a continuous and discrete 3-state ac - 3 - y tracking filter.

Chapter 6 presents the error covariance analysis technique that is used in

obtaining error covariance equivalent models for higher order and reduced order sys-

tems. Both continuous and discrete derivations are presented. A continuous closed
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form application is presented for a 3-state (x - - tracking filter. The discrete case is

verified with a closed form solution to the 2-state x - 3 tracking filter, and a numerical

analysis of a 3-state ax - P - y tracking filter.

Chapter 7 presents the results of steady state gain analysis for the discrete

x - 13 - y tracking filter.

Chapter 8 summarizes conclusions, major contributions, and suggests recom-

mendations for future research efforts.
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CHAPTER 2
TECHNICAL BACKGROUND

2.1 Literature Survey

The problem of state estimation of maneuvering vehicles and its associated

analytical complexities has engendered a substantial body of research literature. Chang

and Tabaczynski [1984] present an excellent survey paper that discusses design prob-

lems and solutions for the target tracking problem. The paper addresses design trade-

offs, performance evaluations, and current issues. This chapter outlines pertinent

approaches and key results taken in the past. The chapter outline is keyed on the major

chapter areas that follow.

2.1.1 Nonlinear Tracking Filters

The introduction of nonlinearities to the tracking problem is brought about

through the selection of coordinate systems for the system dynamics and sensor meas-

urements. The natural coordinate system for the systems dynamics is a cartesian coor-

dinate system. However, since the sensor measurements are generally radar measure-

ments of range, azimuth, and elevation, the natural coordinate system for these meas-

urements is a polar coordinate system. The designer must then decide whether to

implement the tracking filter with linear system dynamics and nonlinear measure-

ments, or with nonlinear system dynamics and linear measurements. The linear dynam-

ics and nonlinear measurements results from using a state vector based on a cartesian

coordinate system, while the nonlinear system dynamics and linear measurements

result from selecting a state vector based on a polar coordinate systems. Brammer

[19831 and Blackman [1986] outline the advantages and disadvantages to either
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approach. Examples of nonlinear target models are presented by Lefas [1984], and

Bullock and Sangsuk-Iam [1984]. In general, a state vector based on cartesian coordi-

nates has an intuitive appeal [Chang and Tabaczynski; 1983] and therefore linear sys-

tem dynamics are selected, and the nonlinear measurements are implemented with an

nonlinear or extended Kalman filter.

Nonlinearities are also encountered when orientation information is incor-

porated into the system dynamics and sensor measurements. Kendrick et. al. [19811

note that previous research on tracking estimators suffer from one major flaw.

Maneuver estimators that have only position measurements, experience significant

delays before adjusting to unexpected target maneuvers. The authors point out that

filter response time would be much faster if measurements of acceleration could be

obtained. In order to circumvent the limitation of position only measurement filters,

they incorporate orientation measurements. Having these additional measurements

takes advantage of the high correlation between aircraft orientation and the direction of

target acceleration. This coupling is characterized by the following relationships.

1. The velocity of the aircraft is nearly along the longitudinal axis, with the

offset being angle of attack and sideslip.

2. Dominant acceleration is nearly normal to the velocity vector and nearly

normal to the wings.

3. Positive lift is more likely than negative lift due both to pilot physiological

factors and structural loading design.

4. Acceleration in the velocity direction (drag and thrust) are generally smaller

in magnitude and of shorter duration than normal accelerations (lift).

5 Angle of attack is nearly proportional to the magnitude of the normal

acceleration, and inversely proportional to the square of the speed.
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The above relationships show the significant coupling between orientation and

acceleration.

In the work of Kendrick, the nonnormal acceleration (lateral and tangential)

components are modeled as a first order Gauss-Markov process with

1
(t) a a(t) + w(t) (2.1-1)

The normal acceleration is modeled as an asymmetrically distributed, time

correlated, random process with hard limits on acceleration magnitudes. The normal

acceleration is given by

aN = a + 3eYE (2.1-2)

where ox, 13, y are constant for a particular type of aircraft and c is derived from a

colored noise process. This yields an asymmetric probability density function which

can be shaped to provide a more realistic model of piloted aircraft maneuvering capa-

bility.

The tracker then consists of two simultaneous filters. The first filter estimates

kinematic parameters of target position, velocity, and acceleration. The second filter

estimates target orientation. Both filters are coupled in order to maximize estimation of

target position and orientation.

The use of attitude measurements was extended by Andrisani et. al. [1986b,

1985a, 1985c, 1985d]. The achievement of improved current and future position esti-

mates was achieved by estimating aerodynamic force magnitudes and direction.

Details and results of this approach are presented in chapter 3 herein.
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2.1.2 Linear Tracking Filters

In order to gain insight into tracking filter performance, the vehicle being

modeled is often assumed to be a point-mass whose velocity or acceleration is constant

in one of three orthogonal directions. The vehicle dynamics are presented in cartesian

coordinates, and sensor measurements of position are assumed to be available in each

of the three orthogonal directions. With this formulation the filter performance is

decoupled in the three orthogonal directions, and therefore analyzed individually in

one of the directions.

The earliest models chosen for describing aircraft motion were classified as

a - 3 trackers. These models assumed that the aircraft was flying a constant velocity

flight path trajectory. Deviations from the constant velocity trajectory are modeled as

gaussian white noise. x - 3 trackers are sometimes referred to as the random walk

velocity (RWV) or "white acceleration" models [Fitzgerald; 1981]. The state vector is

formulated as

x[x,.x,y , z I T  (2.1-3a)

x ,x2 .... X6 I T(2.1-3b)

where (x,y,z) are coordinates of a Cartesian coordinate system. The notation X (t) indi-

cates time differentiation (i.e. dxldt). The three degree of freedom continuous equa-

tions of motion are

Xi =xi+i i = 1,3,5 (2.1-4a)

xi+ = wi (2.1-4b)

where wi is a process noise used to account for modeling errors. The continuous state

space formulation including measurements dynamics in one of the three orthogonal

directions is then
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[~]=[O1~~)01 ~ [WV -N w (,q,) (2.1-5)

[1 0] [(t ),] + v wv-N(O,r) (2.1-6)

where w, and v, are zero-mean uncorrelated Gaussian noise sources with noise inten-

sity of q, and r, respectively.

An extension of the a - tracker is the cx - tracker. This tracker

assumes the aircraft is flying with constant acceleration. Deviations from this trajec-

tory are modeled as gaussian white noise. (x - - , filters are sometimes referred to as

random walk acceleration (RWA) or "white jerk" models [Fitzgerald; 19811. The state

vector is formulated as

=[X,.c, y , , Y;,z, T, (2.1-7a)

xx2 ..... x9 I(2.1-7b)

where again, (x, y, z) are coordinates in a cartesian coordinate system. The three

degree of freedom continuous equations of motion are

i~i = Xi+l (2.1-8a)

xi+l =xi+ 2  i=1,4,7 (2.1-8b)

Xi+2 = wi (2.1-8c)

The continuous state space formulation including measurements dynamics in

one of the three orthogonal directions is then
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i W 0X01 (t) + 0 ; w N (O,qa) (2.1-9a)
x(/)J 0 0 x(t) Wa

1[0 0 X (t)
z = o ] [x(t) +v,, va-N(O,r) (2.1-9b)

where Wa and Va are zero-mean uncorrelated gaussian noise sources of intensity qa

and r respectively.

The period 1970 through the present shows a proliferation of papers dealing

with the problem of tracking maneuvering targets. One of the first papers of this period

was a paper by Singer [1970] who developed a correlated noise model that is used

extensively in many papers that followed. Singer reasoned that modeling the pilot's

input as white noise was a poor representation of reality. Instead he proposed model-

ing the pilot's input as correlated function of time. Singer's continuous time model is

[ 01 0 1 [(t)] 0
[( 0 1 [x(t) + [ w(t) (2.1-10)0(~ 0 -I/,M L.(/) I

The correlation function for this colored acceleration is shown in Figure 2-1, where

r (t) = E ( (t)i(t+t) = expctaexp( -i o/nop

where E (.} denotes the expectation operator.
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r( )

3/4

1/2

I-/4 \

-3rm -2Tm - Tm 0 lTm 2tm 3Rm

Figure 2-1 Correlation Function for Target Acceleration

Two parameters are critical in this formulation. The first is the correlation time con-

stant, T,,. Singer provides the following guidelines for the selection of 'tm"

1. Lazy turns give rise to correlated accelerations for up to one minute (i.e. -"

= sixty seconds)

2. Evasive maneuvers provide correlated acceleration inputs between ten and

thirty seconds

3. Atmospheric turbulence provides correlated acceleration inputs for one or

two seconds.

The second critical descriptive parameter is 2 , the variance of the target

acceleration. For a target acceleration model, Singer uses the probability distribution

function shown in Figure 2-2.
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p(a)

PMAX 1-(P0+P MAX) 0 PMAX
2A MAX

-AMAX 0 AMAX

Figure 2-2 Target Acceleration Probability Density

This distribution is a modified uniform probability distribution based on the following

considerations:

1. The maximum target acceleration is ±Amax and has an associated probabil-

ity Pmax

2. The target has zero acceleration with probability P,.

3. The target will accelerate between the limits -A max and +A max according to

a uniform probability distribution with probability

1 - (Po + 2P max) (2.1-12)
2Amax

The variance (oa2) of this model is

A2

A- = max
• -- = -5- (1 + 4Pma - Po) (2.1-13)
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Singer states that this model has been used in tracking simulations and has

been shown to provide a satisfactory representation of the targets instantaneous

maneuver characteristics.

Since many measurement sensors sample target position with a constant data

rate T, it is necessary to formulate the discrete counterparts to the continuous aX - P and

(x - - f tracking filters. If the continuous system dynamics are given as

x(t) = Fx(t ) + Gu( ) (2.1-14)

then the discrete system dynamics may be represented as [Kwakemaak and Sivan;

1972]

x(k+1) = 4x(k) + Fu(k) (2.1-15)

where

(D = eFT

and

r= (j eA tdt)B

where it is assumed that the sampling time is held constant and the input u(t) is held

constant over the sampling period T.

Applying this discretization procedure to the RWV and RWA models of

Fitzgerald or the exponentially correlated acceleration model of Singer's with a very

short sampling period and large correlation time constant results in the discrete cc - 13

and a - 13 - y tracking models. The discrete state space formulation of these models is

given by
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a - 0 Trackers

T2
p (k+l) =p(k) + Tv(k) + -yj-w,(k) (2.1-16a)

v(k+)=v(k)+Twa(k) (2.1-16b)

a - - y Trackers

T 2  V(k+l1) = p(k) + Tv (k) + --,r.a(k)+ -..wj(k) (2.1-17a)

T2
v (k+1) =v(k) +Ta(k) + -,--wj(k) (2.1-17b)

a (k +1I) = a (k)+rwj (k) (2.1-17c)

where T = discrete time between increments k and k+l; p(k), v(k), and a(k) represent

position, velocity, and acceleration, respectively. The terms wv, Wa, and wj are

discrete zero-mean uncorrelated Gaussian noise sequences used to account for model-

ing uncertainties in velocity, acceleration and jerk (acceleration derivative) respec-

tively.

The discrete matrices governing the discrete system dynamics are then given

as

a - 13 Tracker
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a - - Tracker

1 T T2/2]T/
T)0 1  T 2/2

0 0 1 T

For the x - 13 - y tracking dynamics, it is assumed that the input to the system

represents the time derivative of acceleration. If the system input is in fact a system

acceleration, then r must be modified to

It should be noted that the fundamental structure for the a - 13 and (X - 13 - 7

results in upper triangular matrices for the continuous F matrices and the discrete (D

matrices. This fact is exploited in the error covariance analysis that will be investi-

gated. This upper triangular form results from the phase variable nature of this prob-

lem and also due to the fact that the true system input is unknown. The lack of

knowledge of the system inputs severly degrades the performance capabilities of the

filter. A means for overcoming this performance degradation is also investigated using

orientation information and input estimation techniques.

These trackers are supplemented with measurements of vehicle position and

possibly vehicle velocity that are corrupted by a discrete zero-mean white noise

sequence. This information is then used in a standard discrete Kalman filter to esti-

mate vehicle trajectories.

Singer's work analyses the discrete a - - tracker and then provides a tech-

nique for estimating tracking performance using the following design parameters:



19

1. T, sampling time

2. tin, maneuver correlation time

3. a,2 , maneuvering variance

4. ,2, measurement variance

Plots of normalized error covariance values versus sampling period are presented for a

variety of design parameter combinations.

Singer's model is generic in nature and is simple to implement. For this rea-

son, it has received a great deal of attention in the literature. However, Singer points

out some shortcomings of the model. The tracking performance of this filter will often

be below that obtained by simple filters, such as a least squares filter, when tracking

targets that move at a constant velocity. The correlated noise filter must keep the gain

vector relatively large in order to follow maneuvers as soon as they occur. Conse-

quently, although performance against maneuvers is good, performance against non-

maneuvers is degraded from that of simple filters. The designer must select t.. and a 2

in advance, which presents a problem. Filter performance is relatively insensitive to

t,, particularly as the sampling period T decreases. Unfortunately, the filter perfor-

mance is sensitive to the selection of q 2 , and the designer must select this value a

priori with the hope of maintaining adequate filter performance for maneuvering and

nonmaneuvering targets.

A follow on paper by Singer and Behnke [1971] presents a comparison of five

real time tracking filters based on tracking accuracy and computer requirements. The

five filters are:
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1. Kalman filter

2. Simplified Kalman filter

3. a - 3 filter

4. Weiner filter

5. Two point extrapolator

The authors conclude that in many practical systems, the constant gain Weiner

filter provides tracking accuracy equivalent to that of the more sophisticated Kalman

filter, at one third the computational cost. The authors qualify this statement by noting

that if high accuracy is required and if the length of the transient period of the filter

approaches that of the tracking interval, the simplified Kalman filter becomes attractive

for implementation.

Spingarn and Weidman [1972] took the approach of using a linear regression

filter for tracking maneuvering targets. The approach is basically a linear least squares

estimation problem using both an expanding memory filter, and a truncated or fading

memory filter. The authors conclude that the filtering should be performed in cartesian

coordinates in order to avoid large dynamic errors associated with a line of sight

(polar) coordinate formulation. They also conclude that the fading memory filter out-

performs the expanding memory filter for maneuvering targets.

Noting the tradeoff of tracking maneuvering versus nonmaneuvering targets,

extensive work was done to see if this shortcoming could be circumvented. The gen-

eral approach taken to resolve this shortcoming was to develop an adaptive filter that

incorporated some type of decision making mechanism to determine if the aircraft was

in a maneuvering or nonmaneuvering mode. Appropriate adaptive tracking

modifications are then performed.



21

McAulay and Denlinger [1973] combine an optimum maneuver detector with

Singer's generalized tracking model. The maneuver detector is based upon whether

the filter residuals are zero mean for the nonmaneuvering case, or biased for the

maneuvering case. The detection of a maneuver is equivalent to the detection of a

deterministic signal of unknown amplitude and unknown time of arrival, corrupted by

white gaussian noise. The maneuver discriminant is then based upon a generalized

likelihood ratio test.

The authors outline an optimal bias detector based on a bank of M square-

law-detection filters, where M determines how many past sample periods will be tested

for bias detection. Noting the computational effort associated with this optimal bias

detector, the authors go on to present a suboptimal bias detector. The suboptimal

detector uses a simplified detection statistic denoted as the exponential bias detector.

This detector requires, a priori, the selection of appropriate detection thresholds and

memory periods to get reasonable maneuver detection/false-detection performance.

Thorpe [1973] introduces a binary random variable in the target state equa-

tions to account for maneuvering target motion. The tracker uses a maneuver detector

to determine if the binary random variable is to take on the value of I (maneuver) or 0

(nonmaneuver). The value of the binary random variable determines if a forcing func-

tion should be present or not. The maneuver detector is a likelihood ratio test based on

measurement residual characteristics.

Gholson and Moose 11977] outline two adaptive state estimation techniques.

Both estimates incorporate a semi-Markov modeling process for the target model. A

semi-Markov process is a probabilistic system that randomly selects its acceleration

input command vector according to the transition probability matrix of a Markov pro-

cess. A semi-Markov process differs from a Markov process in that the duration time

in one state prior to switching to another state is itself a random variable. The model
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for the maneuvering target (using the authors notation) is

x (k+1) = Ox (k) + r(w (k) + u (k)) (2.1-18)

where x(k) represents the state vector and w(k) and u(k) are stochastic and determinis-

tic inputs respectively. Note that this model includes a deterministic input u(k), whose

value is based on a semi-Markov model. In this way large scale target maneuvers are

modeled as a stochastic process whose mean value switches randomly among a finite

set of predetermined values. A limitation to this method is the requirement for a large

number of preselected mean values in order to ensure convergence of the estimation

process.

At later approach by Moose et. al. [19791 takes this model one step further by

incorporating Singer's correlated acceleration model. The inclusion of this time corre-

lated, randomly switching forcing function is more representative of real world target

maneuvers.

Ricker and Williams [1978] take an approach that is similar to Gholson et. al.

[1977,1979] where they develop an adaptive filter by augmenting the tracking filter

with additional filters for input estimation purposes. The method treats the residuals as

having a multivariate gaussian density and through the use of Bayesian decision rule

develops the probabilities of occurrence associated with a prescribed set of discrete

maneuvers. The paper states that an error analysis determines that a set of five possible

inputs is sufficient for accurate tracking.

Two studies by Clark [1976, 1977] explore means to overcome the estimation

accuracy versus responsiveness to maneuvering targets tradeoff problem. Clark's solu-

tion was the development of a dual bandwidth adaptation filter with residual feedback

maneuver detection. This work clearly demonstrates the need to tune the filter to

achieve a filter bandwidth that will yield the smoothest unbiased estimates. Using a

discrete X - - y filter, examples of acceleration estimates are presented. These
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examples clearly demonstrate that a low bandwidth filter provides very good estimates

for a nonmaneuvering target; but given the onset of an acceleration input, filter perfor-

mance is severly compromised due to the poor transient response of the filter. If the

bandwidth of the filter is increased, then filter performance for nonmaneuvering vehi-

cles is degraded due to increased noise corruption of the estimate; but the transient

response is enhanced when maneuvers are encountered. Clark's method is then to sta-

tistically analyze the filter residuals to determine when a maneuver occurs. If no

maneuver is detected the process noise covariance is set at a low value yielding a low

bandwidth filter with it's accompanying advantages. Upon the detection of a

maneuver, the process noise is increased to widen the bandwidth, and to achieve a

satisfactory response.

Bar-Shalom and Birmiwal [1982] use a variable dimension filter approach. A

low order model is used when the target is not maneuvering. The state transition matrix

is augmented with additional states upon a maneuver detection. The system reverts to

the lower order model when the filter deems that the maneuver has ended. The

maneuver detector employed is similar in nature to McAulay and Denlinger's [1973],

although two different test statistics are used in the switching process.

Berg [1983] describes a tracking algorithm that was implemented in a General

Dynamic's radar tracker and tested against a variety of fixed wing aircraft targets.

Berg tests the tracking algorithm against an aircraft performing a coordinated turn

where

1. Mean target lift acceleration is constant.

2. Mean target thrust (i.e. thrust minus drag) is constant

3. Mean target roll rate is zero.

Berg modifies Singer's correlated acceleration by including an additional term

a, which is computed as a function of the most recent estimates of target velocity and
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acceleration. This term represents the mean target jerk. The acceleration model is

1 + I w(t)+' (2.1-19)

The process noise intensity Q and the measurement noise intensity R are com-

puted adaptively as a function of the most recent estimates of the state. Simulation

results demonstrated the fact that for expected target trajectories and engagement

ranges, the incremental transformation of the estimation covariance matrices, between

measurement updates, played a negligible role in the determination of the filter gains.

Since Q and R were slowly varying functions of time (relative to the measurement

update rate), then the steady state filter gains could be closely approximated by steady

state gain values computed strictly as a function of Q and R for each channel. In order

to meet imposed fire control computer memory and execution time constraints, the

choice of filter gains were based on steady state results for given levels of Q and R.

Given the inherent limitations on tracking filters that use only measurements

of position, Kendrick as stated previously, incorporated measurements of attitude

based on the premise that attitude is strongly correlated with vehicle acceleration.

Unfortunately, the six degree of freedom equations of motion associated with this

approach are highly nonlinear. Andrisani [1985a, 19871 examines simplified linear

models that utilize orientation measurements to enhance filter estimates and predic-

tions.

Andrisani [1985a] first examined fixed wing aircraft models that incorporated

pitch attitude information and its relationship to aircraft vertical velocity and accelera-

tion. A frequency domain error analysis was performed between a - 03, cc - 0 - y, and

filters using orientation information. This analysis shows that attitude information

dramatically improved estimates of the aircraft's position, velocity, and acceleration.
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A later study by Andrisani [19871, examines the performance of helicopter

tracking filters that incorporate attitude and rotor angle measurement. Trajectory simu-

lations demonstrated a substantial improvement in estimating future helicopter position

when using attitude and rotor angle measurements as compared to standard a -

trackers.

2.1.3 Input Estimation

In general, efficient estimation schemes require complete knowledge about

system dynamics, inputs, disturbances, and initial conditions. Incomplete information

with respect to any of these factors will generally result in degraded estimates of state

time histories. This section reviews the problems and suggested solutions to estimat-

ing state time histories when incomplete input information is available. The tracking

problem is a prime example of trying to estimate position, velocity and acceleration of

a vehicle without the benefit of knowing the system inputs. Another example is the

case of an aircraft performing maneuvers with degraded or failed control affectors.

Under these circumstances a fault detection and isolation (FDI) procedure is needed to

identify the location and magnitude of the degraded/failed control affector. A single

input-single output (SISO) FDI met methodology is presented by Gleason and

Andrisani [1987b]. A multiple input-multiple output methodology is presented by

Mayhew and Gleason [19881.

Chan et. al. [19791 develop a tracking scheme that estimates the acceleration

inputs from the residuals, and uses the input estimates to update the Kalman filter. At

each measurement, the scheme produces an estimate of the maneuvering input vector

whose norm is then checked against a threshold level. When there is a detection, the

filter is upd4ted by the estimate of the input vector. The aim of updating the filter out-

put is simply to remove the filter bias caused by the target deviating from the assumed
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constant velocity, straight line motion.

A later paper by Chan et. al. [19821 develops a computationally simpler imple-

mentation of the input estimation concept. The resulting filter is suboptimal, but the

authors state that the computational savings make this a superior tracker as compared

with their earlier work.

Bogler [19871 extends the work of Chan et al. [1981], by developing recursive

relationships for the Chan formulation. This methodology is verified using a one

dimensional Kalman filter.

An alternative approach to input estimation is to augment the tracker with a

model of the system inputs, and then to select the tracker gains to minimize the errors

between the true state and predicted state. This approach is examined in chapter 5

using a generalized approach to observer design for systems with unknown exogenous

inputs. The continuous and discrete results parallel the techniques developed for

designing robust control schemes. This methodology is commonly referred to as Linear

Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR). The original continuous

work was performed by Doyle [1979] who demonstrated the technique of picking

observer gains to recover stability margins (i.e. gain and phase margins) for systems

that are implemented with observers. Maybeck [1982] presents the technique for

discrete time systems.

2.1.4 Error Covariance Analysis

As stated previously, the model selection procedure for tracking filters is based

on the underlying assumptions concerning the vehicle motion. These assumptions deal

with whether the vehicle is moving with a constant velocity or constant acceleration in

one of three orthogonal directions. The selected model is then used with measurements

of vehicle position in a state estimation filter to estimate the vehicle trajectory. The
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resulting error covariance for the state estimator is then determined by the model struc-

ture, along with the selected process noise and measurement noise intensity levels.

The process noise is added to the system model to account for modeling deficiencies

due to model structure or unknown inputs. Therefore the selection of the process noise

levels is key design factor. An obvious evaluation figure of merit is the error covari-

ance that results from a selected level of process noise.

Hutchinson et. al. [1985] investigate the selection of a process noise level that

yields a minimum variance reduced order (MVRO) estimator. Their approach uses

linear transformation techniques in conjunction with the matrix minimization princi-

ples.

Mavromatis et. al. [1987] develop a procedure for the numerical optimization

of tracking filters. This method is used select optimum process noise levels to account

for unknown input levels. The results include tracker tuning parameters and tracker

gains as a function of the severity of the motion of the aircraft.

Gleason and Andrisani [1987a, 1986] examine an error covariance analysis

technique for models of differing orders. This technique exploits the upper triangular

structure of tracking filters to develop a Ricatti equation solution for the error covari-

ance difference that between higher order and reduced order models. This result is used

to determine process noise levels to achieve a reduced order model that has an

equivalent error covariance history to that of a higher order model. The results are

presented for continuous and discrete systems, and is formulated for generalized sys-

tem dynamics that can be modeled with an upper triangular system dynamics matrices.

Although the objectives and methodologies are different from those of Hutchinson et.

al., the results are identical for systems of similar structure.
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2.1.5 Constant Gain Analysis For Discrete Tracking Filters

To reduce computational requirements, filters are often implemented using a

constant gain Kalman filter [Berg; 1983]. For this reason extensive work has been

done to find closed form solution to the steady state continuous and discrete Ricatti

equation used in determining Kalman filter gains.

Fitzgerald [1981, 1980] provides closed form solutions for the error covariance

and Kalman gains of continuous trackers with exponentially correlated velocity (ECV)

and acceleratiot, (ECA) inputs. By allowing the correlation time constant to approach

infinity, a limiting analysis yields closed form solutions for the random walk velocity

(RWV), and the random walk acceleration (RWA) cases.

Ekstrand [1985] provides closed form solutions for continuous ct - P filters

that have both position and velocity measurements.

A number of analyses have been performed on discrete steady state tracking

filters. Friedland [1973, 1975] provided closed form solutions for error covariance and

estimator gains for a - 03 trackers with position only measurements. Yu and Meyer

[1985] provide steady state closed form solutions for c - [3 trackers with no process

noise and position only measurements. Ekstrand [1983] analyzed steady state a - [3
trackers that include velocity measurements in addition to position measurements.

Kalata [19841 examined a, a - P3, and a- 13- y trackers with position only measure-

ments. Kalata identifies a tracking index which is a function of the design parameters.

He shows that the gain solutions are functions of this tracking parameter and provides

a graphical solution for position gains. Ramachandra [1987] has also investigated

steady state filters for position, velocity and acceleration estimates. Chapter 7 herein

also investigates closed form solutions to three state tracking filter. Like Ramachandra,

the solution necessitates solving a quartic equation. This is done using a symbolic

manipulation program entitled MACSYMA. Ramachandra's work is extended by



29

performing a limit analysis, and presenting three dimensional representations of the

tracker gains as a function of the process noise and measurement noise covariances.

2.2 Kalman Filters

The Kalman filter [Kalman; 1960] is the predominant analytical tool used in

modem day trajectory estimation. Some of the many advantages of the Kalman filter,

when properly applied, are:

1. The output of the linear Kalman filter provide optimal (meaning unbiased,

minimum variance) estimates of the state vector.

2. Kalman filters utilize state space representations which are ideally suited to

the modem analytical and computational environment. For the problem of tra-

jectory prediction, this is exceptionally useful, as it provides the flexibility of

analyzing and comparing simplistic one-degree of freedom trackers to the

more complete six-degree of freedom models.

3. Kalman filters have inherent diagnostic capabilities via residual or innova-

tions analysis to determine it's efficacy in state estimation.

These are just of few of the advantages of the Kalman filter. The widespread

use and attention given to the Kalman filter is a testimony to its usefulness as an

engineering tool. However, like all mathematical techniques, its usefulness is model

and assumption dependent. If the real world application differs significantly from the

proposed mathematical model and assumptions, then problems are bound to arise.

This is inherently true in the estimation and prediction of aircraft trajectories, since

complete model information is generally unavailable.

As stated earlier, if the aircraft is following a steady, level constant velocity

flight path, then the estimator can use, in a very straightforward manner, a low order

linear Kalman filter. However, if the aircraft is maneuvering to any significant degree,



30

the application of the Kalman filter is no longer a straightforward procedure. In this

case, the equations of motion become highly nonlinear, and an extended Kalman filter

would be used. Unfortunately, many of the optimal properties of the linear Kalman

filter are not retained with the extended Kalman filter. The qualities of the estimates

become trajectory dependent, and the gain and the covariance never achieve steady

state values and therefore cannot be precomputed. However, the performance of

extended Kalman filters has been good in a number of practical applications [Gelb;

1974]. Preliminary results of this effort also reveal good performance by the extended

Kalman filter.

This chapter describes the equations used in a linear Kalman filter (LKF), and

the extended Kalman filter (EKF). Both the continuous and discrete filters are

presented for the LKF. The measurements used in the aircraft tracking problem are

given at discrete time intervals, and therefore the discrete LKF is generally used. How-

ever, the observer augmentation technique of Chapter 5, and the error covariance tech-

nique of Chapter 6 are presented for both the continuous and discrete LKF. For this

reason both continuous and discrete developments are presented in this chapter. The

Kalman filter developments in this chapter are based on those found in Gelb [1974].

2.2.1 Linear Kalman Filters

2.2.1.1 Continuous Linear Kalman Filters

The state and measurement model for the continuous Kalman filter are

i(t)=Fx(t)+Gw(t), x(0) =x 0  (2.2-1)

z (t) = Hx (t) + v (t) (2.2-2)

where x (t) c R n is the system state vector, z (t) E RI is the system measurement vec-

tor. The terms w(t)E£R" and v(t) eR' represent process noise and measurement
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noise respectively. The matrices F, G, and H are dimensioned to ensure compatibility.

The optimality of the LKF is based on knowing the statistics for the initial conditions,

process noise, and measurement noise. These are assumed to be (Note E {.} denotes

the expectation operator. )

Initial Condition Statistics

E (x (0)} =YO (2.2-3a)

E ([x (0) - Yo][x (0) - Yo]T]) = Po (2.2-3b)

Process Noise Statistics

E [w (t)} = 0 (2.2-4a)

E (w (t)w (t)T) = Q 6 (t - T) (2.2-4b)

Measurement Noise Statistics

E (v (t)} = 0 (2.2-5a)

E (v (t)v (t)T} = R 8 (t - T) (2.2-5b)

where 6 (t - t) is the Dirac delta function defined as

8 (t -'r) = { 't =  (2.2-6a)

1 (t - r)dt = I (2.2-6b)

and Q and R are the spectral density matrices for the process noise and measurement

noise, respectively. The spectral density matrix R is assumed to be positive definite.

Additional assumption concerning correlations between the noise sources and

initial conditions are enumerated as follows
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1. E[w(t) v(T)TI=0, for all t, T2:0

2. F[x (0) w(I)T]=0, for all t, 2!0

3. E [x (0) V(t)TI=0, for all t, 2!0

The Kalman filter equations are given as

State Estimate

Y(t) =FY(t) +K(t)[z(r) -HY(t)], ie(0) =Yo (2.2-7)

Error Covariance Propagation

P(t)=FP(t)+P(t)FT +GQGT -K(t)RK(t)T, p(o)=p, (2.2-8)

where P is the error covariance matrix defined as

P (t) = E &I (r )-i(t )][X (t )-i@ )]T) (2.2-9)

Kalman Gain

K~t)= P(t)HR-1(2.2-10)

The continuous LKF has an inherent diagnostic capability based on the statistical pro-

perties of the residuals or innovations which are defined as

r (t) = z(t) -H(t) (2.2-11)

If the LKF is performing in an optimal manner (i.e. providing unbiased, minimum

variance estimates ), then it can be shown that the residuals have the following statisti-

cal properties [Kailath; 1968].

Optimal LKF Residual Statistics

E(r(t)) =0 (2.2-12a)

E (r Q )r (,)T) = R8 (Q - r) (2.2-12b)
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The residuals can be analyzed statistically to determine if the above statistics

are satisfied. If the residuals have the above statistics, then the continuous LKF is per-

forming optimally.

2.2.1.2 Discrete Linear Kalman Filters

The state and measurement models for the discrete LKF are

x (k+l) = ox (x) + Fw (k) (2.2-13)

z (k) = Hx (k) + v(k) (2.2-14)

where x (k) c R n is the discrete system state vector, z (k) E RI is the discrete system

measurement vector. The terms w (k) c R- and v (k) F- RI represent process noise and

measurement noise sequences respectively. The matrices 0, F, and H are dimensioned

to ensure compatibility. The optimality of the LKF is based on knowing the statistics

for the initial conditions, process noise, and measurement noise. These are assumed to

be

Initial Condition Statistics

E (x (0)} =YO (2.2-15a)

E ([x (0) -o][X() -. 0 ]T} = P 0  (2.2-15b)

Process Noise Statistics

E {w (k)) = 0 (2.2-16a)

E {w (i)w (j)T) = Q Bij (2.2-16b)

Measurement Noise Statistics

E (v (k)) = 0 (2.2-17a)

E (v (i)v (j)T) = R Bij (2.2-17b)
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where 6,- is the Kronecker delta defined as

i0 j = J (2.2-18)

and Q and R are the covariance matrices for the process noise and measurement noise,

respectively. The assumption of no correlation between process noise and measure-

ment noise is made (i.e. E (w (i)v (j )T) = 0, for all ij _> 0.

The discrete Kalman filter equations are separated into two sets of equations

designated as the prediction equations and the filtered equations. The definitions for the

state estimates and their associated covariances are as follows

Predicted Estimate

(k)= E {x(k )Iz(j),j = 1,2,...,k-1) (2.2-19)

Predicted Error Covariance

M (k) = E {[x (k) - T(k )][x (k) - F(k )]T} (2.2-20)

Filtered Estimate

Y(k )=E (x(k )Iz(j),j = 1,2,...,k} (2.2-21)

Filtered Error Covariance

P (k) = E [[x (k) -Y(k)[x (k) - (k)IT} (2.2-22)

The predicted and filtered equations are

Predicted Equations

i'(k +1) =' .D(k ) (2.2-23)

M (k+l) = DP (k)(DT + FQ I''  (2.2-24)

Filtered Equations

Y(k +1) =iF(k+1) + K(k+l)[z (k+l) - H'(k+1)] (2.2-25)
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K(k+l)=M(k+I)HT[HM(k+)HT + R -' (2.2-26)

P (k+1) = [I- K(k+I)HIM(k+l) (2.2-27)

where K(k+1) = Kalman filter gain at time k+l.

The discrete LKF also has an inherent diagnostic capability based on the sta-

tistical properties of the residuals or innovations which are defined as

r (k) = z (k) - Hi(k) (2.2-28)

If the LKF is performing in an optimal manner (i.e. providing unbiased, minimum

variance estimates ), then it can be shown that the residuals have the following statisti-

cal properties.

Optimal LKF Residual Statistics

E {r(k)} = 0 (2.2-29a)

E {r (i)r (j)T} = Rr 8 (t - ) (2.2-29b)

where

Rr =HMHT +R (2.2-30)

The residuals can be analyzed statistically to determine if the above statistics

are satisfied. If the residuals have the above statistics, then the discrete LKF is per-

forming optimally.

2.2.2 Nonlinear Kalman Filters

If the model of the aircraft dynamics is nonlinear, then a nonlinear or extended

Kalman filter (EKF) must be used to estimate current and future positions of the air-

craft. Since the measurements are provided at discrete points in time, a continuous-

discrete or hybrid EKF is formulated. A standard approach is used in developing the

EKF equations [Gelb; 1974].
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The system and measurement models are given by

XW(t)=f(x(t),t)+w(t), x(0) =x0 (2.2-31)

z (k) = h (x (k,k)) + v (k) (2.2-32)

where x (t) e R n is the continuous system state vector, z (k) £ R l is the discrete system

measurement vector. The terms w (t) F R I and v (k) e R I represent process noise and

measurement noise respectively. The terms f(x(t),t) and h(x( t k, k)) are time-varying

vector functions consisting of the nonlinear relationships describing the state propaga-

tion and measurements. The statistical characteristics for the above stochastic system

are

Initial Condition Statistics

E (x (0)} = o (2.2-33a)

E ([x (0) - x0][ x (0) - . 0 ]T 1) = P o (2.2-33b)

Process Noise Statistics

E w()} = 0 (2.2-34a)

E (w (t)w (t)T} = Q 8 (t - T) (2.2-34b)

Measurement Noise Statistics

E {v (k)) = 0 (2.2-35a)

E (v (i)v (j)T} = R 8ij (2.2-35b)

The EKF is implemented under the assumption that the process noise is uncorrelated

with the measurement noise (i.e. E [w (t)v (k )T} = 0 for all k and all t.)

The implementation of the EKF requires the linearization of the nonlinear

equations of f(x(t),t) and h(x( tk, k)). This is achieved using a Taylor series expansion

of these relationships and neglecting higher order terms. Using the notation developed
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in the LKF section of this chapter, the following definitions will be used.

F t f V(x t (t), () (2.2-36)F(. (t),t)= x(t) I~)gt

H (i-(k),k ) =AO (X (tk ),k ) Ix(k (2.2-37)
X (tk ) x(k (

The following conditions are assumed to hold for the initial conditions and

cross correlation between the process and measurement noise

Y(0) = E [x (0)] (2.2-38a)

P (t = 0) = E [(x (0) - i(0))(x (0) - C(0))T ] = P0  (2.2-38b)

E Ix (0) w (t)1] = 0 for all t >O (2.2-38c)

E Ix (0) v (k)T] = 0 for all k=0,1,2.... (2.2-38d)

E[w(t) v(k)T] =0 for all t,k (2.2-38e)

The EKF is then given by

Predicted Equations ((k-1)T < t < kT)

Y(t) =f ((),t) (2.2-39)

with initial condition i(k-1)

P (t) = F (Y(t),t)P (t) + P (t)F (.i(t),t)T + Q (2.2-40)

with initial condition P(k-1)

The matrix relationships represent n state equations and n 2 variance equations.

For the nonlinear trackers of chapter 3, each equation is integrated forward in time

using a fourth order Runge-Kutta integration routine to yield estimates ii(k) =(t=kT)

and M(k) = P(t=kT).

Filtered Equations ((k-I)T < t < kT)

Y(k) = I(k) + K (k)[z (k) - h (-(k),k) (2.2-41)
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P (k) = [I - K (k)H ((k))]M (k) (2.2-42)

K (k) = M (k)H (.(k))T [H (j-(k))M (k)H (-(k))T + R ]-1  (2.2-43)

In addition to the predicted equations, which are used at a specified time (k =

tk), the tracker must be able to predict what the future states of the aircraft will be.

This is done using predictor equations, which are identical to the predicted equations,

except that the predicted equations are integrated over one measurement time interval,

while the predictor equations are integrated over N measurement time intervals. N is

determined by how far into the future a prediction value is needed. A prediction time

of one second was chosen for this study, therefore since the integration interval is one

thirtieth of a second, then N = 30.

The above EKF equations are used to track the full six degree of freedom air-

craft motions analyzed in chapter 3.
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CHAPTER 3
NONLINEAR TRACKING FILTER ANALYSIS

3.1 Introduction

This chapter presents the technical formulation and results of four nonlinear

trackers. The first two trackers are six and nine state models of trackers based on

point-mass representations of a maneuvering aircraft. The tracker measurements are

radar measurements of range, azimuth, and elevation and their associated rates. The

last two trackers have twelve and fifteen states, and include orientation information in

both the dynamics model of the aircraft, and in measurement sequences being provided

to the tracker.

AU four trackers are then exercised against a fixed wing aircraft performing a

5-g right turn. Performance figures of merit are calculated and presented for evalua-

tion and comparisons of the trackers. A tuning study of the process noise is undertaken

for the 5-g right turn maneuver. The results of the tuned filters are presented.

3.2 Nonlinear Tracking Filter Models

3.2.1 Tracking Filters With Radar Measurements

As was stated earlier, the design of tracking filter models requires a prelim-

inary decision on coordinate selection for the system dynamics, and the system meas-

urements. This analysis is based on using a cartesian coordinate system for the system

dynamics and a polar coordinate system for the measurement dynamics. The state vec-

tor for the Kalman filter will be composed of the position, velocity, and acceleration of
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the aircraft in one of three orthogonal directions of an earth-fixed coordinate system.

Therefore, the resulting radar based measurements must be converted to the elements

of the state vector which results in a nonlinear measurement matrix, which necessitates

the use of an extended Kalman filter.

3.2.1.1 Six State Nonlinear Tracking Filter

The six state nonlinear tracking filter consists of a state vector of positions and

velocities in three orthogonal directions. The state vector is

S= [i, ,i,x, y, T (3.2-1a)

x ,x2 .... X6 IT(3.2-1b)

where (x, y, z) are coordinates of a cartesian coordinate system. This selection of states

corresponds to the random walk velocity of Fitzgerald [198 11. The equations of motion

for this tracker are given in Table 3-1.

Table 3-1. Six State Tracking Equations

y=y

i =w

y'=w5
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The terms w4, w5 , and w6 are additive zero-mean, uncorrelated, gaussian

noise terms.

The six state filter is provided with discrete radar measurements of range (R),

azimuth (ri), elevation (c), and their associate rates. A pictorial of the radar measure-

ments is given in Figure 3-1. The equations relating the radar measurements to the

selected state variables are given in Table 3-2. The vi, i=4,9 terms are additive zero-

mean, uncorrelated, gaussian noise terms.

Table 3-2 Radar Measurement Equations

R = [x 2 +y 2 + z 2] 1/2 + v 4

71 = tan-(y /x) + v 5

= tan- (-z/(x 2 + y 2)1/2) + v 6

R = (xx + y] + zz) / (X2 +y2 + Z2)1/2+ V 7

Tl = (xy -y.j) / (x 2 +y 2) + v 8

= [Z (X. + y) (x 2 + y 2 )] /

[(X 2 +y 2 + Z 2)(X2 + y 2 ) 1/2 ] + V 9

3.2.1.2 Nine State Nonlinear Tracking Filter

The nine state nonlinear tracking filter consists of a state vector of position,

velocity, and an exponentially correlated noise state in three orthogonal directions.
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Figure 3-1 Radar Measurement Definitions
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The exponentially correlated noise states are added to more accurately model aircraft

inputs. The state vector is

= x, y, z, b, by, bz] T (3.2-2a)

= IXlX2 ..... x9 I(3.2-2b)

where again, (x, y, z) are coordinates in a cartesian coordinate system, with

bx, by, and b, representing the correlated noise states. The equations of motion for the

nine state tracker are given in Table 3-3.

Table 3-3. Nine State Tracking Equations

z =

.i = (b, + w 4)

=(by + w 5)

" = K(bz + w 6 )

b =(-)b. + W 7

b, = (L)b, +w8

b2 = (-)b, + w 9

The terms wi, i=4,9 are additive white noise terms. The constant K is included

to account for scaling effects.
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The nine state filter is provided with the identical discrete radar measurements

as the six state filter. The relationships between the elements of the state vector and the

radar variables are presented in Table 3-2.

3.2.2 Tracking Filters With Radar and Orientation Measurements.

3.2.2.1 Twelve State Nonlinear Tracking Filter

The twelve state tracker is based on including additional information concern-

ing aircraft orientation. This orientation information is assumed to be the Euler angles

that relate the orientation of an earth-fixed dextral coordinate system to an aircraft

body-fixed dextral coordinate system. The orientation angles selected are the standard

aircraft rotation angles of [Roskam; 1972]

1.0 -- Pitch angle

2. -- Roll angle

3. i -- Yaw angle

The inclusion of these rotational degrees of freedom introduces a certain

degree of complication to the problem. In general, the rotational equations of motion

are formulated in an axis system that is body fixed (i.e. remains stationary with respect

to the aircraft). This is problematic since the most pertinent information to the tracker

is the positional estimates of the aircraft in the tracker coordinate frame, which for this

problem is considered an inertial frame. This problem is overcome by using appropri-

ate coordinate transformations. The use of coordinate transformations allows for infor-

mation developed in the body fixed frame to be used as needed in the inertial frame.
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The coordinate systems used in this development are shown in Figure 3-2.

Note that the body fixed (b -b -b2 ) coordinate system is both translating and rotating

with respect to the inertial (i. -iyi,) coordinate system. The body fixed coordinate

system is an orthogonal right handed system described as follows.

1. The positive x-axis is defined as the line that runs from the aircraft center of

gravity (c.g.) through the nose of the aircraft.

2. The positive y-axis is defined as the line perpendicular to the x-axis that

runs from the aircraft c.g. through the right wing.

3. The positive z-axis is mutually perpendicular to the x and y axes and runs

from the aircraft c.g. through the bottom of the aircraft.

The orientation angles are defined by three consecutive rotations (as shown in

Figure 3-3) and carried out in the following order.

1. The inertial (ix-iy-i4) coordinate system is rotated about the i axis over an

angle V . This yields the first intermediate coordinate system, X 1-Y I-Z 1.

2. The X 1-Y 1 -Z 1 system is rotated about the Y I axis over an angle 0. This

provides the second intermediate coordinate system, X 2 -Y-Z 2.

3. The X 2-YZ-Z 2 system is rotated about the X2 axis over an angle 0. This

yields the body fixed coordinate system & -4 y-b z

Using the above coordinate systems and orientation angles, the angular velo-

city vector (w) of the body fixed coordinate system with respect to the inertial coordi-

nate system is defined as

o,=P + qby + rbz (3.2-3)

where p is roll angular velocity, q is the pitch angular velocity and r is the yaw angular

velocity.
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The rotational equations of motion are developed using the following assumptions.

1. The aircraft has a plane of symmetry given by the x-z plane. Under this con-

dition, the products of inertia IJ and ly are zero.

2. The mass of the aircraft is constant.

3. The aircraft is a rigid body.

The angular rotation of the aircraft is then governed by the following equations

[Roskam; 19721

lx4p - xz" -. pq + (l,, - lYY )rq = L (3.2-4)

yyl + (1,, -zz)pr + Ixz(p 2 - r 2) = M (3.2-5)

Izz"- Ixz + (lyy - I,, )pq + Ixz qr = N (3.2-6)

= p + q sinotan0 + r cosotan0 (3.2-7)

= qcoso - rsino (3.2-8)

= (q sino + rcos)cos 0 (3.2-9)

where l,, I, I, and I,, are moments and products of inertia, and L, M, N, are exter-

nal moments.

The above kinematic equations contain tan 0 terms which can present numeri-

cal problems for trajectories with large pitch angles. Under these conditions, the selec-

tion of quaternions or the selection of an alternative sequence of Euler angle rotations

would correct this situation. Since the trajectories examined in this research will not

have large pitch angles over the selected trajectories, the use of these Euler angles will

not present a problem.
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A set of generalized equations for the external moments is given by

L = k1 3 + k2p + k 3r + k 48a + k 58r (3.2-10)

M =k 6u +k 7 x+k 8q +k 98e +klO (3.2-11)

N =kl113+ki 2p +k1 3r +k148a +k1 58r (3.2-12)

where a and 03 are angle of attack and sideslip angles respectively, and u is the com-

ponent of vehicle speed along the x-axis. The constants ki, i=1,15, would be com-

posed of relevant aerodynamic and thrust stability derivatives. The terms 8 a, 8 r and

&, are the aileron, rudder and elevator angles respectively.

Examining the above equations shows that certain elements of the equation are

dominant in determining the motion of the aircraft. Specifically, pilots input of eleva-

tor, aileron or rudder is of major importance in determining aircraft motion. Since this

input is unknown, it will be modeled as a stochastic process. In view of this, smaller

terms can be ignored. The equations are simplified using the following assumptions.

I. 5=0

2. k3 =k 5 =k 6 =k8 =kIo=k 1 2 =k 1 3 =k 14 =0

3. Iz =0

The resulting rotational equations are
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IUfi + (lzz - lyy )rq = k 2p + k 48a (3.2-13)

Ir 4 + (I= - lzz )pr = k7a + k 98e (3.2-14)

Izz i + (Iyy - I,, )pq = k 158r (3.2-15)

=p + q sinotan0 + r cosotanO (3.2-16)

- qcoso - rsino (3.2-17)

V = (q sino + rcoso)/cos 0 (3.2-18)

As stated earlier, the aircraft tracker requires information concerning aircraft

position in an inertial reference frame. This is unfortunate since the aircraft orientation

information and therefore the force and moment information is developed in a body

fixed reference frame. This necessitates the use of coordinate transformation matrices

so that the force and moment information developed in a body fixed reference frame

can be used in an inertial reference frame.

The inertial translation motion of the aircraft is modeled as

.x =x (3.2-19)

;=y 3(3.2-20)

z =z (3.2-21)

i = Fi (3.2-22)

mY = Fy (3.2-23)

mi = F i + mg (3.2-24)

where the i superscript designates force components in the inertial coordinate direc-

tion, m is the mass of the aircraft, and g is the acceleration due to gravity acting in the
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positive t, direction.

The inertial components of the force vector are derived from aircraft orienta-

tion and velocity information as described in the following paragraphs.

The external forces acting on the aircraft and the aircraft velocity vector, V,

are shown in Figure 3-4. The following assumptions are made concerning the external

forces.

1. The force resultant vector F due to aerodynamic and thrust forces is located

in the aircraft plane of symmetry (x-z plane). This assumes that all aircraft

turns are coordinated turns.

2. Thrust exactly cancels aerodynamic drag so neither one needs to be

modeled.

3. The vehicle is flying in still air, and therefore the wind vector is in the oppo-

site direction of the c.g. velocity vector.

The magnitude of the force vector is modeled as

F = 1/2pV 2SCL~ao (3.2-25)

where

p = air density

V = airspeed, assumed to be the speed of the c.g.

S = wing area

C1, = lift curve slope

ct = aircraft angle of attack

The force and velocity vectors can be represented in either the body fixed

(k -by -b, ) or the inertial (i -iy-i ) reference frame as follows
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Inertial Representation

F =F' iA+Fy +Fl i, (3.2-26)

V=xi +y +~ +i (3.2-27)

Body Fixed Representation

F'b 1 +F'b 6y+ F~b (3.2-28)

V = Ub6+ vb6 +W 6 (3.2.29)

To move freely between frames of reference, a coordinate transformation

matrix consisting of direction cosines is needed. For the inertial and body fixed refer-

ence frames selected for this research, the following transformation matrices are used.

Body to Inertial [TbI[cos~cosO cosNysinOsirno - sinN~coso cos~fsin0coso + sinxsinol
[Tab] sin~lcos6 sin~isin~sino + cosxJcoso sin~lsin0coso - cosysino

-sin e cos~sino cosOCOSO

Inertial to Body Transformation [Tj I

FcosXVcos6 sin~icosO -sine
[TAI= cosigsin~sin - sin~lcoso sin~lsin~sino + cosWcos4 cos~sino

cos~fsin0coso + sin~IsinO sin~isin0coso - cos~sino cos~cosoJ
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In order to calculate the direction of the force vector T, we must transform

inertial velocities to body fixed velocities.

This is performed using the inertial to body transformation ITbI.

P = T , (3.2-30)

Figure 3-5 shows the relationship between the aircraft velocity vector, the

components of the aircraft velocity vector and the body fixed axis system. The velo-

city components along the body fixed axes are then (with V = magnitude of V)

u V cos1 cost (3.2-31)

v - V sinp (3.2-32)

w V cos[3 sincc (3.2-33)

The earlier assumption of 3 = 0 reduces these equations to

u = V cosax (3.2-34)

v = 0 (3.2-35)

w = V sinat (3.2-36)

Rearranging the equation 3.2-36 gives

a = sin-' (w/V) (3.2-37)
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Figure 3-5 Angle of Attack and Sideslip Angles in Body-Fixed Axis System
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Under the previous assumption that the force vector lies in the x-z plane, and

is perpendicular to the velocity vector, the following relationships hold for the force

vector components in the body fixed coordinates.

Fb = F sinat (3.2-38)

Fy= 0 (3.2-39)

F b =-F cosox (3.2-40)

The inertial components of the force vector are needed as inputs to the transla-

tional equations of motion. These are obtained by transforming the body fixed com-

ponents to inertial components.

F = [T] jF (3.2-41)
Fi Fb

In summary the procedural steps for determining the inertial components of

the force vector are

1. Transform the inertial velocity components (, , ) ) to body fixed velocity

components (u, v, w).

2. Using body fixed velocity components, calculate the aircraft angle of attack

(a).

3. Using (x, calculate the body fixed components (FJb, Fy', Fb) of the force vec-

tor (F).

4. Transform the body fixed components of the force velocity to inertial com-

ponents (Fl, Fj, Fi) of the force vector.
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These procedural steps are depicted pictorially in Figure 3-6. This figure

clearly shows the interaction between the translational motion and the rotational

motion that is exploited in this approach. This approach yields a coupled set of 12

nonlinear equations of motion which are summarized in Table 3-4.

The equations of Table 3-4 are then implemented with an extended Kalman

filter. The state vector for the twelve state EKF is

F 1 T
X = 1p q, r, ,X, , , xy, Z(3.2-42a)

= [xlx2,. . . X12I (3.2-42b)

The input elements of 8a, 8e, 8r, are unknown, and therefore will be modeled

as noise processes. The equations of motion for the twelve state tracker are presented

in Table 3-5.

The twelve state tracking filter is provided with discrete radar measurements

of range (R), azimuth (Ti), elevation (c), and measurements of the Euler angles

0, 0, and V. The radar and orientation measurement equations are shown in Table 3-6.

The vi, i= 1,9 are additive zero-mean, uncorrelated, gaussian noise terms.
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Table 3-4 Aircraft Six Degree of Freedom Equations of Motion

I + (4,,-Jz)pr =k7ct+k,9 5e

1, r + (!yy - I,,)pq = k158,

=p + q sinotan0 + r cosotanO

0=qcoso - rsino

x= (q sino + rcoso)/cos 0

y =

my =zFy

= (sin y{sinacos0 - sinyjcosczcososinO + cosxj~cosasino) F

mi= Fi + mg

=(-sinczsinO - cosacosocosO) F + mg
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Table 3-5 Twelve State Tracking Equations

(Iy -I, f1  k2 +k 4W}

(7*yi 1 ,)p + k7 at+k 9w2}

q ( 7 -yji-Ixp

=p + q sin~tanO + r cosotan0

0 =qcoso - rsino

=(q sino + r coso)Icos 0

i FIm

=(cos WjsinczcosO - cos~fcosaxcososin0 - sin~rcosczsino) F/rn + KCW4

=(sin x~~sinczcos0 - sinN~cosotcososinO + cos'.pcosasino) F/rn + XW 5

=Fil/m + g

=(-sinasinO - cosacos~os0) F/rn + g + cW 6
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Table 3-6 Radar and Orientation Measurement Equations

Om=O+vi

0 m =9+V 2

V41m =XV+V 3

R =[x2 +y 2 +z 2]1/2 +v 4

Tl = tan- (y/x) + v5

= tan-I(-z/(x 2 + y 2 ))1/ 2 + v 6

R = (Xj + y): + zz)l/ (X2 + y2 + Z2)1/2+ V7

Tj = (xy -y) /(x 2 +y 2) + v8

= [z (Xi +yy))-z(x 2 +y 2 )]/

[(X 2 +y 2 + Z2 )(X 2 +y 2 )12] + V9
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3.2.2.2 Fifteen State Nonlinear Tracking Filter

The fifteen state tracker consists of the twelve state tracker with the addition of

three exponentially correlated noise states. The exponentially correlated states are

added to account for the fact that aircraft input is a correlated function of time. The

addition of the three correlated states leads to the following state vector

X bp,q,r,O,O,W,.i, ,,x,y,z,bx,by,b 2IT (3.2-43a)

= x,x 2.. x1T (3.2-43b)

The equations of motion for the fifteen state tracker are presented in Table 3-7. The

terms wi ,i=1,9 are additive zero-mean uncorrelated gaussian noise processes.

The radar and orientation measurement equations are unchanged from the

twelve state filter.

The equations of motion shown in Tables 3-1, 3-3, 3-5, and 3-7 are combined

with the measurement equations of Tables 3-2 and 3-6 as the basis for the four non-

linear tracking filters. The performance characteristics of these tracking filters are now

examined.
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Table 3-7 Fifteen State Tracking Equations

P ( 7- I yy -JIz)rq + k2p +k4W1

(Iz- ,,)pr+k7X+k w2

q 7yy

=p + q sinotan6 + r cosotan0

q qcoso - r sino

4f (q si no + r cos4)/cos 6

x=x

=(cos \isinctcosO - cos~icosaxcososin0 - sin~icosasino) F/rn + 1CW 4

=(sin WjsincxcosO - sin~c(xcososinO + cos~icosasino) F/rn + cW 5

i = Film + g

=(-sinasinO - cosacosocos6) F/rn + g + cW 6

,, = -)by + W8

1,=2-~b +w
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3.3 Tracking Filter Comparisons

The four tracking filters are now exercised against an aircraft performing a

variety of maneuvers.

The first maneuver investigated is a 5-g turn performed by an aircraft of the

F-5 or T-38 class of fighter aircraft. The vehicle is initially traveling in an easterly

direction (along the inertial ir axis) at 440 ft/sec. The tracker is centered on the iner-

tial coordinate system and begins tracking when the aircraft is at the following coordi-

nates.

x = 3000 feet (north of tracker)

y = - 1445 feet (west of tracker)

z = -1000 feet (above the tracker)

One and one half seconds into the trajectory, the aircraft begins a banked turn to the

right. Three seconds later, a maximum bank angle of 78 degrees is achieved. The air-

craft then begins to slowly reduce the bank angle so that the aircraft achieves a south-

erly heading. The aircraft undergoes a decrease in altitude of 780 feet and maintains

an approximately steady 440 ft/sec velocity throughout the maneuver. The trajectory

for this turn is shown in Figure 3-7.

Using a digital flight simulator program entitled FLTSIM [Jones; 1978], the

nonlinear six degree of freedom differential equations of motion are integrated using a

fourth order Runge-Kutta numerical integration routine.

The measurement sequence for a given trajectory is given by

a) Converting exact inertial positions and velocities to a corresponding meas-

urement variable of range (R), range rate (R), azimuth (i"), azimuth rate (11),

elevation (C), and elevation rate ( ). This is accomplished using the relation-

ships of Table 3-2. A zero-mean, uncorrelated, gaussian noise sequence of
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Figure 3-7 Right Turn Trajectory
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approriate variance is added to each measurement.

b) The exact orientation angles are also corrupted by an additive zero-mean,

uncorrelated, gaussian noise sequence to produce orientation measurements.

The noise variances for the nine measurements are presented in Table 3-8.

Table 3-8 EKF Measurement Noise Statistics

v - N(O,r 1) rI = .7x IO-(rad)2

v2 - N(O,r2) r 2 = .2x 10-2 (rad)2

V3 - N(O,r 3) r 3 = .2x 10-2 (rad)2

V4 - N(O,r 4) r4 = .25x 104 (ft)2

v 5 - N(O,r 5 ) r5 = .4x 10- 5 (rad)2

V6 - N(O,r 6) r 6 = .4x 10- 5 (rad) 2

V7 - N (O,r7) r 7 = .25x 104 (ft/sec )2

v8 - N(0,r 8) rg = .16x 10- 4 (rad/sec) 2

v9 - N(0,r9 ) r9 = .16x 10- (rad/sec) 2

The process noise statistics for the additive noises of Tables 3-1, 3-3, 3-5, and 3-7 are

shown in Table 3-9.
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Table 3-9 EKF Process Noise Statistics

" N(0,q 1 ) qI = 4.0x 10- 6 (rad/sec2)2

- N (O,q2) q2 = 2.Ox 10- 4 (rad/sec2)2

- N(0,q 3) q3 = 6.Ox 10- 6 (rad/sec 2)2

w4 - N(O,q 4) q 4 = 1.2x 10-4 (ft/sec2)2

w5 - N(0,q 5) q5 = 1.2x 10- 4 (ft/sec2)2

w - N(0,q 6) q 6 = 1.2x 10- 4 (ft/sec2)2

7 - N (0,q7) ;7 = .Ox 10- 3 (f t /sec 2)2

w 8 - N(0,q8 ) q8= 1.Ox 10- 3 (ft/sec2)2

w9 - N(O,q 9 ) q9 = 1.0x 1 - 3 (ft/sec2)2

The four trackers are now analyzed to determine their ability to predict the air-

craft position one second ahead into the future. The results of this analysis are now

discussed and summarized in the following tables and figures.

Figures 3-8 through Figures 3-14 plot the one second ahead predicted values

versus the true state values. In performing the one second ahead predictions, the algo-

rithm assumes that angular velocities p, q and r are zero.

Figures 3-8 through 3-13 depict the 12-state and 15-state one second ahead

predicted values for pitch, roll and yaw angles. Examination of these estimates shows

that in general the orientation angle predictions lag the true values by one to two

seconds. A significant proportion of this lag is due to the assumption of zero angular

velocities Later in this chapter, the angular predictions are made under the assump-

tions of constant angular velocities and time varying angular velocities. Using these

assumptions significantly reduces or completely eliminates the prediction lag.
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Figure 3-12 Predicted vs True Yaw Angle (12-State Est.)
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The prediction angles for the 6-state and 9-state estimators are not shown since they

provide no information to these estimators.

Figures 3-14 through 3-25 depict the one second ahead predicted values for x,

y and z positions. In these figures, there are obvious differences in the quality of the

predictions.

Figures 3-14 through 3-17 show the results for the x-position. It is apparent

that the 6-state estimator is deficient from approximately 8 seconds to 14 seconds.

Including the colored noise states (i.e. 9-state estimator) reduces the errors, although

the errors are still significant in the 8 to 10 second time frame. The 12 and 15-state

estimators outperform the 6 and 9-state estimators and are relatively comparable in

prediction accuracy.

Figures 3-18 through 3-21 show the results for the y-position prediction. Fig-

ure 3-18 reveals an increasing degradation in estimation accuracy starting at 10

seconds. The 9, 12, and 15-state estimators maintain an accurate track of y-position

throughout the trajectory.

The z-position prediction results are given in Figures 3-22 through 3-25.

Again, the 6-state estimator turns in the worst performance. The 9 and 15-state estima-

tors provide comparable predictions of z-position. The 12-state estimator appears to

provide the best estimates of the z-position.

Figures 3-26 through 3-29 provide plots of miss distance versus time for the

four estimators. The miss distance is defined as

miss distance = j(x (k +30) -Y (k+301 k ))2  (3.3-1)

(y (k +30) - Y(k +301 k ))2

(z (k +30) - i(k +301 k ))211/2
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where Y(k +30 k) represents the the predicted estimate of x-position at t = (k+30)T

given measurements to t = kT. For the sampling period of T = 1/30 second used in this

analysis, this yields the one second ahead prediction.

As anticipated, the 6 and 9-state estimators performance is below the 12 and

15-state estimators. The 12-state estimator yields a lower maximum error than the 15-

state error, but the 15-state estimator appears to have a lower average error value

across the trajectory period.

In order to evaluate estimation performance across the complete trajectory

period, an RMS error value was calculated for the x, y, z states and for the miss dis-

tance calculation. The results are given in Table 3-10.

Table 3-10 EKF RMS Prediction Errors

miss

Estimator x y z distance

(ft) (ft) (ft) (ft)

6-state 108.0 124.5 37.6 169.1

9-state 26.5 24.5 9.6 37.3

12-state 14.0 24.8 5.1 29.0

15-state 17.2 14.9 8.1 24.2

In general, the 15-state estimator gives the minimum RMS error for a majority

of the states. The miss distance RMS error is the best overall indicator of tracking per-

formance, and the minimum error is given by the 15-state estimator.

The results of Figures 3-8 through 3-29 and Table 3-10 were then used as

baseline figures in a number of sensitivity analyses. These were used for comparison

purposes in evaluating alternative tracker implementations. The alternative tracker
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implementations investigated are:

1) Process Noise Tuning Analyses

2) Alternative Rotation Prediction Assumptions

3) Radar Rate Assumptions

4) Aircraft Dependent Stability Derivative Assumptions

In general, the selection or tuning of the process noise for an extended Kalman

filter presents a difficult problem. Since the filter results are suboptimal from a

mathematical vantage point, the achievement of the "best" suboptimal results depends

upon trial and error techniques for selecting process noise levels. This tuning process

is trajectory dependent, and therefore must be reaccomplished for every trajectory

modification. Given the nature of the tracking problem, where the trajectory is

unknown a-priori, the achievement of the best trajectory estimates is unlikely. How-

ever, a process noise tuning analysis can provide insight into relative process noise

level selection and the sensitivity of the estimates to various process noise levels.

Starting with the baseline noise statistics of Table 3-8, the process noise levels

were increased and decreased by orders of magnitude. The computer simulations were

then rerun to determine the effects on RMS miss distances. The runs that produced the

lowest RMS miss distances are presented in Table 3-11.
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Table 3-11 Tuned Process Noise Levels

6-State 9-State 12-State 15- State

q I 4.OE-04 4.OE-06

q2 -2.OE-02 2.OE-04

q 3 ----------..--------- 6.OE-05 6.OE-07

q4 1.2E-02 1.2E-04 1.2E-04 1.2E-04

q5 1.2E-02 1.2E-04 1.2E-04 1.2E-04

q 6  1.2E-02 1.2E-04 1.2E-04 1.2E-04

q7 1.OE-02 --------- 1.0E-04

q 8 --------- 1.OE-02 --------- 1.OE-04

q-9 1.OE-02 --------- 1.0E-04

miss distance 45 33 28 24

Although the results of Table 3-11 are not guaranteed to provide the minimum

miss distance, it is felt that the process noise levels represent reasonable values to use

in the follow-on analyses. In addition, two important conclusions can be drawn. First,

the inclusion of orientation measurements results in a more robust estimator. In other

words, the 12 and 15- state trackers were far less sensitive to selecting "correct" values

for process noise. This is a significant conclusion, since the values for the process noise

must be selected to account for unknown inputs and trajectories. A model that is less

sensitive to this selection procedure is clearly superior to a model whose tracking per-

formance depends strongly upon selecting correct values for process noise levels. The

second conclusion is that the addition of the exponentially correlated noise sources

enhances tracker performance. Examination of Tables 3-10 and 3-11 reveals the supe-

rior results obtained by the 9-state tracker and 15-state tracker over the 6-state tracker

and 12-state tracker. Therefore, only the 9-state and 15-state trackers are used in the
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following evaluations of the performance capabilities of trackers using standard radar

measurements versus those augmented with orientation measurements.

An analysis of rotation predictions assumptions is also performed. In previ-

ously calculating the one second ahead predictions, it was assumed that the aircraft

orientation angles remain unchanged over the prediction period. This was done by set-

ting the derivative rotational equations to zero and thereby reducing the load of the

estimators. To see what effect this assumption has on the estimation accuracy, addi-

tional runs were performed assuming constant and time varying angular rates. These

additional runs were performed for the 15-state estimator. For each of the runs the

RMS error values were computed and are presented in Table 3-12.

Table 3-12 EKF RMS Errors for Rotation Assumptions

Assumption x y z miss distance

(ft) (ft) (ft) (ft)

Zero Rot. 15.3 17.2 6.7 24

Cnst Rot. 15.0 16.2 6.7 23

T.V. Rot. 14.4 20.3 8.7 26

Again there are no clear discriminatory differences between any of the three

different approaches. The constant rotation rate for this maneuver gives the lowest

RMS miss distance errors. The conclusion that can be drawn is that the assumptions

made for the rotation rates are not critical. Future runs will be made with the assump-

tion of zero rotation rates since this appears to give an acceptable prediction accuracy

and reduced computational requirements.

The next analysis addresses the effect of the radar rate measurements of R, I,

and on the tracking performance of the 9-state and 15-state trackers. This is accom-

plished since certain tracker implementations may not have these measurements. The
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two trackers were rerun against the 5-g right turn; however this time the measurement

noise variance corresponding to the range rate measurements were set to 1.0E06 in

order to substantially reduce the EKF gains associated with these measurements. This

has the effect of essentially ignoring the contributions of these measurements. The

results of deemphasizing the radar rates is shown in Table 3-13. As can be seen, the

radar rates are more critical to the 9-state tracker than to the 15-state tracker. This is

not a surprising result since range rates provide velocity information, which is unavail-

able to the 9-state tracker.

Table 3-13 EKF RMS Errors for Radar Rate (RR) Assumptions

Estimator x y z miss distance

9-state

with RR 24.4 18.9 11.0 32

without RR 76.8 75.3 27.3 11

15-state

with RR 15.3 17.2 6.7 24

without RR 14.5 20.1 8.0 26

The final analysis investigates the sensitivity of the 15-state tracker perfor-

mance to the aircraft dependent constants used in the equations of motion found in

Table 3-7. This is achieved by setting the aircraft dependent constant for the angular

rate equations to zero. This amounts to modeling the angular rates of roll, pitch, and

yaw as white noise. The 9 and 15-state trackers were run against the 5-g right turn tra-

jectory. The results of these runs are displayed in Figures 3-30 and 3-31. The line in

Figure 3-30 represents the actual trajectory. The squares represent the one second

predicted positions made by the 9-state tracker. The plus symbols represent the one

second prediction made by the 15-state tracker. Figure 3-31 shows the top view of
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Figure 3-30 starting from 2.5 seconds into the trajectory. This is the point where the

aircraft initiates it's maneuver. The RMS miss distance for the 9-state tracker is 51.4

feet. The RMS miss distance for the 15-state tracker is 25 feet. This is over a 100 per-

cent reduction in RMS error.

Additional maneuvers were also investigated. The maneuvers are:

1. 5-g S-turn.

2. 5-g Pull-up/Push-over.

3. 2-g Dive/Pull-up.

4. 5-g Right Turn with Rudder.

The results for these maneuvers can be found in the report Target Trackers for

Maneuvering Aircraft by Andrisani et. al. [1985].

The work presented in this chapter resulted in a number of research questions

which were difficult to address due to the nonlinear nature of the tracking problem. To

investigate these questions, it was necessary to make certain assumptions that lead to

linear models that can be analyzed with the extensive linear techniques that are avail-

able. These analyses are found in the next chapters.

3.4 Summary

This chapter presents the development and implementation of nonlinear track-

ing filters. A radar measurement only tracking filter is improved by incorporating

orientation information. This allows for the estimation of both the magnitude and

direction of the force system acting on the aircraft, which improves aircraft accelera-

tion estimates. Knowledge of acceleration is used to improve estimates of present and

future positions of the aircraft. Simulation of a manuevering fighter aircraft indicates

that dramatic tracking improvements are achieved.
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Figure 3-30 5-g Right Turn (9 -state vs l5-state)
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Figure 3-31 Top View 5-g Right Turn (9-state vs 15-state)
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CHAPTER 4
LINEAR TRACKING FILTER ANALYSIS

The linear ox - P - y trackers discussed previously, uses a very simplistic

approach to modeling aircraft trajectory motion. This approach models the aircraft as

a point-mass, and uses derivative relationships between position, velocity and accelera-

tion to estimate aircraft motion. The more extensive nonlinear models that include

orientation information, take a more detailed approach to modeling the aircraft motion.

Although this approach will, in general, provide a more accurate representation of air-

craft motion, it provides little insight into which parameters and variables are critical in

determining the aircraft trajectory. Many important and key concepts can be disguised

by a 12th or 15th order system of nonlinear differential equations. This chapter there-

fore investigates the inclusion of orientation information with a linear model. The pur-

pose being to find an improved model that extends the simplistic -3 - y model,

while retaining the advantages associated with a linear modeling process.

4.1 a - 13 - yTracking Filters

The first model analyzed is the three degree of freedom - 13-y model.

Rather than examining a nine state model which incorporates position (x) , velocity

(v), and acceleration (a) in three directions (i.e. x-y-z), a simpler three state model

which only uses position, velocity and acceleration in one direction is considered.

Since the a - 3 - y tracker treats each direction independently, no loss of generality

occurs with this approach.
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The true model, which generates true values of position, velocity and accelera-

tion is given by

x (k+1)1 1 T T2/2 x(k) T3/6]
[v(k+1)J-- 01 T v(k) + T2/ u(k) (4.1-1a)
[a (k+l1) - 0 0 1 a(k)

x(k)I

z(k)[1 OOj v(k)l +v(k) (4.1-Ib)
-a Wk)J

Since the input is known, no process noise drives the true model. Also, only a

single measurement of position (which is corrupted by a zero-mean, uncorrelated,

gaussian noise) is used by the filter. The true input to the model results in a positive

16.05 ft/sec2 (1/2 g) step acceleration starting at 5 seconds and lasting 5 seconds.

Then a negative 16.05 ft/sec2 acceleration is experienced for the time period of 10 to

15 seconds. The acceleration is zero for the remaining 5 seconds of the run.

The filter model is given by

x(k+1) I T T2/2 [x(k) [T3/61
v(k+l)= 0 1 T v(k) + T w(k) (4.1-2a)
a (k+1) . 0 1 a(k) T

[x (k)1
z(k)=[1001 v(k)I +v(k) (4.1-2b)

a (k)J

The only difference between the true model and the filter model is the input to the

model. The true model is driven by a deterministic input. The filter model is driven by

a stochastic process that is used to model the unknown deterministic input to the true

model. The stochastic process is a zero-mean, uncorrelated, gaussian process with a

covariance matrix Q.

Since the white noise process is used to account for the unknown input, some

general observations can be made.
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1. If the input to the true system is small, then the uncertainty that the process

noise must account for is small. For these circumstances the value of Q should

be small.

2. If the input to the true system is large, then the uncertainty that the process

noise must account for is large. For these circumstances the value of Q should

be large.

In general, the value of Q should be proportional to the magnitude of the input

squared. This presents an obvious problem. If the time initiation, duration and the

magnitude of the input is unknown, then how can the value of Q be selected? One

method is for the designer to select an average value of Q a-priori and use this constant

value throughout the tracking period. This method is examined in this section

The a-priori approach to the selection of Q requires the designer to select a

value of Q and use this constant value throughout the tracking period. To determine

what the effect of Q is on tracking ability, three values of Q are investigated.

1. Q=10.37 (ft/sec 3)2 (mild maneuver)

2. Q=1037 (ft/sec 3)2 (moderate maneuver)

3. Q=9332 (ft/sec3)2 (violent maneuver)

The value of '1_ represents the acceleration derivative or jerk of the aircraft. These

values assume a 0-g to 1-g (i.e. 32.2 ft/sec2) change in acceleration assuming a con-

stant level of jerk. The mild maneuver occurs in 10 seconds, while the moderate and

violent maneuvers occur in I second and 0.333 seconds respectively.

These three values were used in the LKF equations to track the aircraft motion.

In all these cases, the deterministic input u(k) was as described above.

Figures 4-1 through 4-3 depict the graphical results for the case Q = 10.37

(ft/sec3)2. Figure 4-1 shows the true acceleration versus the estimated acceleration.
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For the first five seconds when the aircraft is not accelerating, the estimates are excel-

lent. After the aircraft begins to accelerate the estimation accuracy falls off dramati-

cally. The acceleration estimate lags the true acceleration by approximately seven

seconds. It is also obvious that after aircraft acceleration has been initiated, that the

estimator is not providing an unbiased estimate of acceleration, so the value of Q =

10.37 (ft/sec3)2 is not yielding a satisfactory estimator. Figures 4-2 and 4-3 show the

associated acceleration errors and position errors for this value of Q. The error is

defined as the true value minus the estimated value. Figure 4-2 shows the effect of the

acceleration estimation lag on the acceleration error. The acceleration estimation lag

produces a clear trend in the acceleration errors. A more satisfactory estimator would

produce random errors, and therefore no predictable trend would be seen. Figure 4-3

shows the position errors versus time and again the graph contains an obvious error

trend indicating nonoptimal estimation.

Figures 4-4 through 4-6 depict the results for the moderate maneuver value of

Q = 1037 (ft/sec3)2. Figure 4-4 shows the true acceleration versus estimated accelera-

tion. Compared to the first case, the estimates for the first five seconds when the air-

craft is not accelerating, shows that the estimate variance has increased. However,

there is an improvement in tracking capability when an acceleration occurs. Although

the estimated acceleration value still lags the true value, the lag time has decreased

from seven seconds in the first case to two to three seconds when Q is increased to the

moderate maneuver level. Examination of Figure 4-5 still shows large nonrandom

acceleration errors around five, ten, and 15 seconds (i.e. points where acceleration lev-

els change), but the errors occur for a far shorter period of time. The same general

statement can be made for Figure 4-6, which shows positional errors versus time for

this case.
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Figures 4-7 through 4-9 show the results for the case when Q = 9332

(ft/sec3)2. Again, the estimation variance for the first five seconds of nonaccelerating

flight shows a marked increase over the first two cases. However, as in the second case

the time lag has decreased to one or two seconds. Examination of Figures 4-8 and 4-9

(acceleration errors and position errors versus time) again confirm that incrcased

values of Q reduces time lags, but increase the error variance associated with the esti-

mates.

In addition to the graphs of Figures 4-1 through 4-9, two additional figures of

merit were computed. The first figure of merit is the root mean square (RMS) value of

the error in position and acceleration estimates for the twenty second trajectory. The

twenty second trajectory is sampled at 30 times per second, thereby yielding 600 data

points. The RMS values for position (c,) and acceleration (ca) are calculated as

v/2
V ==

Ca = ( k)-dk)

where Y and d are the filtered estimates at the time of a position measurement.

The second figure of merit was the maximum error that occurred in position

(eu,,,,) and acceleration (e,,,.,) for the twenty second trajectory. These values were

determined from the graphs of position and acceleration errors versus time.

The values for these figures of merit are shown in Table 4-1.
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Table 4-1 Error Values for a-3- y Tracking Filter

Ex La F_' Ea,.

(ft) (ft/s2) (ft) (ft/s2)

Q =10.37 18.13 14.86 -42 -31

Q =1037 5.00 11.16 -15 -36

Q =9332 5.53 12.98 -15 -44

Examination of Table 4-1 shows that increasing Q from 10.37 to 1037 reduces

E, and E significantly. Increasing Q to 9332 increases La and a,,,.

The results from Figures 4-1 through 4-9 and Table 4-1 reveals the significant

impact the selection of Q has on tracking performance. In general, the higher the value

of Q, the faster the tracker responds to changes in acceleration, although a penalty is

paid in error variances associated with the estimates. The increase in error variance is

particularly acute if the aircraft acceleration values are zero or very small. The conclu-

sion that can be drawn is that if acceleration values are low then values of Q should

also be low and vice versa. If an average value of Q is chosen, then one can expect

good tracking performance for moderate maneuvers, and degraded tracker perfor-

mance for mild or violent maneuvers. These results are consistent with the results of

the nonlinear trackers using radar only measurements, where the estimation accuracy

was highly dependent uporn the selection of the process noise.
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4.2 cc - 8 Tracking Filters

The cx - 8 model (Andrisani; 1985) combines the straight forward approach of

the linear x - P - y model, with the additional orientation information used with the

nonlinear model. In this way, the benefits of the orientation information can be

thoroughly analyzed. This analysis will then provide insight into which parameters

and variables are vital and which parameters and variables may be neglected in the

nonlinear model. Like the ot - P-,y model, the a - 8 model considers motion only

along one of the inertial coordinate axes. The example considered will be a hovering

helicopter performing a bank to translate maneuver. A hovering helicopter moves

sidewards by rolling to one side or the other. This maneuver tilts the lift vector which

is created by the spinning of the helicopter's rotor. The tilting of the lift vector creates

a side force and therefore a side acceleration. For small bank angles (0), the following

continuous linear state space representation may be used

x 0100 X 0

=0 0 g0 x + 0 (4.2-1)
-0 001 06

0 0 00 P L8

where 0 is the bank angle, p is the bank angle rate, and LS 8 represents the input that is

used to bank the helicopter.

Analyzing the above continuous model reveals that the translation motion is

treated as an a - 3 model, (i.e. considers only position and velocity states) and the

rotational motion is also treated as an a - 3 model. The coupling of the two motions

comes from the g term which represents the side acceleration that develops when the

helicopter banks to translate.

Examination of the state equations reveals that the x-acceleration is propor-

tional to the bank angle 4 (i.e. " = g 4). The cx - P - y formulation is predicated on the

fact that there is only a measurement of the position state. The x - 8 model is based
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on using a position measurement, x, and orientation measurement 0. Since 0 is propor-

tional to " a great deal more information is provided to the tracker concerning the

motion of the helicopter. This clearly points out the benefits of incorporating orienta-

tion measurements into a tracking algorithm.

The discrete model which generates true values of position (x), velocity (v),

bank angle (0), and bank angle rate (p) is given as

x(k+1) 1 T cT 2/2 cT 3I6 x(k) cT 4/24
v(k+l), 0 1 cT cT 2/2 v(k) cT 3/6

(k+l) = 00 1 T (k) + T2/2 (k) (4.2-2a)
p(k+1) 0 0 0 1 p(k) T

Szx (k 1 0 0 0 v (k) v~

00 g1  k;I + x(4.2-2b)[z (k =0 0 1 O(k v vO(k (.-b

p(k

where the value of c corresponds to a modified gravity constant to account for angular

values of degrees as opposed to radians (i.e. c = (32.17 ft/sec 2)/(57.3 degree/radian) =

.562), T is the sampling period for the discretization process, and L8 is chosen to be 1.
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The white gaussian noise that is corrupting the two measurements has the fol-

lowing statistics

E (v.,) =0

E(v,(i)v,(j)T) = 2 2 58 ij (ft 2)

E (v) =0

E (v O(i )vO(i )T} = .258ij (degrees 2)

The maneuver that is tracked is the same maneuver tracked by the ax - - y

filter. This corresponds to the helicopter remaining unbanked and not translating for 5

seconds, and then banking a positive 28.64 degrees for the next 5 seconds. This is fol-

lowed by a bank of negative 28.64 degrees for the next five seconds and finally return-

ing to a level (0p = 0) orientation for the final 5 seconds of the trajectory. This results in

a x-translation of 400 feet in the 10 second period that the helicopter is maneuvering.

The filter model used in this analysis is

x(k+1) 1 T cT 2/2 cT 3/6 x(k) cT 4/24
v(k+1) 0 1 cT cT 2/2 v(k) cT 3/6
0(k+l) = 0 0 1 T O(k) + T 2/2 w(k) (4.2-3a)
p(k+l) 0 0 0 1 p(k) T

x(k) 0 0 01 x' (k)1(.-b

p (k)

where w(k) is a zero-mean, uncorrelated, gaussian noise sequence with variance Q.



103

Again, three values of Q were examined. They are

1. Q = .2025 (radlsec 2)2 (mild maneuver)

2. Q = 3.24 (rad/sec 2)2 (moderate maneuver)

3. Q = 2025 (rad/sec 2)2 (violent maneuver)

The values of Q are based on a constant angular acceleration 00 to 900 banked

maneuver. Q = .2025 (radlsec 2)2 corresponds to this maneuver being performed in 20

seconds. Q = 3.24 and 2025 (radlsec 2)2 correspond to a maneuver time of 10 and 2

seconds respectively.

The same analysis which was performed for the ox - -y filter is now per-

formed on the x - 6 filter. This analysis clearly shows how the X - 8 filter outper-

forms the ox - 3 - y filter.

Figures 4-10 through 4-12 shows graphically the results for the case when Q =

.2025 (radlsec 2)2. Figure 4-10 reveals that for this low level of Q the estimated linear

acceleration lags the true acceleration by approximately one second. Figures 4-11 and

4-12 provide the corresponding graphs for the acceleration and positional errors. Both

figures clearly show nonrandom error trends for extended periods of time. The conclu-

sion is that Q = .2025 (rad/sec 2)2 is inappropriate for the maneuvering portion of this

trajectory.

Figure 4-13 through 4-15 provides the results for Q = 3.24 (rad/sec2)2 level

of process noise. Figure 4-13 reveals an improved transient response for acceleration

estimation. The acceleration errors shown in Figure 4-14 contain the same error trends

found in the previous case (i.e. Q = .2025), although the magnitudes of the errors have

decreased slightly. Figure 4-15 shows that the position estimates now lag the true

values, where before they were leading the true value.
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Figure 4-16 through 4-18 shows the results for Q = 2025 (radlsec 2)2. For this

case there is almost no lag in the estimation of the acceleration state. The acceleration

error trends occur for a shorter duration, and positional errors appear to be similar to

the previous case.

To determine how the values of Q affect the tracking performance to the total

trajectory period; RMS '-ror values and maximum error values were calculated. The

results of these calculations are found in Table 4-2.

A comparison of Tables 4-1 and 4-2 shows that with the selection of appropri-

ate values of Q, the ax - 8 tracker clearly outperforms the ox - 03 - y tracker. It is also

clear from Table 4-2 that the x - 8 tracking performance is less sensitive to The Q

value selection. This result is consistent with the results found with the nonlinear track-

ers.

Table 4-2 Error Values for cc - 6 Tracking Filter

Xa E " x C a I

(ft) (fI/S 2) (ft) (ft/S 2)

Q = .2025 4.53 5.29 -7.0 -30

Q = 3.24 0.36 3.55 0.9 -28

Q 2025 0.39 1.23 1.0 -16
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4, Summary

This chapter investigates the improvements that are accrued when orientation

information is included in a linear tracking model. The linear tracker that incorporates

orientation information (i.e. x - 8 tracker) outperforms the point-mass tracker (i.e.

a - 3 - y tracker). In addition, the (x - 8 tracker is more robust in terms of sensitivity

to the selection of the process noise level. These results correlate nicely with the far

more extensive nonlinear analysis performed in Chapter 3.
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CHAPTER 5
OBSERVER DESIGN FOR SYSTEMS WITH

UNKNOWN EXOGENOUS INPUTS

5.1 Introduction

In general, system observers are used to estimate state time histories for sys-

tems with an incomplete set of system state measurements and unknown initial condi-

tions. The design of observers with these condition is predicated on having a known

model of the system, and complete access to the system exogenous inputs. Under these

circumstances, the performance of the system observer is well known and documented

[Luenberger; 19711.

The target trajectory estimation problem is severely handicapped, due to the

fact that the system exogenous inputs are generally unknown. With incomplete

knowledge concerning the system inputs, the question of the selection of the observer

gains becomes critical. This chapter addresses this problem for both the continuous

and discrete observers. The solution leads to the implementation of a Kalman filter

with infinite process noise which has previously been referred to a Fisher fiter

[Schweppe; 1975].

5.2 Continuous Observer Design

The basic approach for the observer design with unknown exogenous inputs is

to model the unknown inputs as states of the system. This requires augmenting the

state vector and the associated dynamics matrix.
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Figure 5-1 represents the time domain block diagram for the augmented

observer implementation. The concatenation of the state and input estimates results in

the n + m augmented state vector as shown.

The governing equations for the system depicted in Figure 5-1 are

System Dynamics

S(t) = Fx (t) + Gu () (5.1-1a)

z(t)= HIx(t) (5.1-1b)

Observer Dynamics

a (-Faf a (t) + Kr (t ) (5.1-2a)

r (t) =z (t) - H2f a (t)(5.1-2b)

where

Fa=00 K= Kx H [I0

where x c R' = system state vector, u c R I = unknown exogenous input vector. The

observer vector ga iRn+m represents the state vector estimate. The vectors z £RI

and r E R I represent the system measurements and residuals. For the purposes of the

present analysis, the system is assumed to have as many inputs as outputs (i.e. 1 = m).

The associated matrices are dimensioned to ensure compatibility.
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Figure 5-1 Continuous Augmented Observer
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In order to determine the accuracy of the input estimation, -it is necessary to

find the overall transfer function matrix between u(t) and a (t). As shown in Figure 5-

2, this requires that intermediate transfer functions be found.

A

Figure 5-2 Continuous Frequency Domain Transfer Function Matrices

The transfer function matrices (TFM) depicted in Figure 5-2 represent the

appropriate Laplace transform input/output relationships. The overall input/output

transfer function matrix is

= G 3(s )G 2(s )G l(S) (5.1-3)

The individual transfer function matrices must be determined from the system

shown in Figure 5-1, and described by equations 5.1-1 and 5.1-2.
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GI(s) Transfer Function Matrix

The G (s) TFM represents the input/output relationship between U(s) and

Z(s). This is found in a straightforward fashion by applying Laplace transforms to

equations 5-1.1 a and 5.1-l b.

= G I(s ) = H I(sl - F )-IG (5.1-4)

G2(s) Transfer Function Matrix

The G 2 TFM represents the input/output relationship between Z(s) and R(s).

The Laplace transform of equation 5.1-2a and 5.1-2b yields

Xa (S) = (SI - Fa)-IKR (s) (5.1-5)

R (s) = Z(s ) - n2, a (s) (5.1-6)

Combining equations 5.1-5 and 5.1-6 provides

R H = G,(s) = [I + H2(sI - Fa)-IK]-  (5.1-7)

G3(s) Transfer Function Matrix

The G 3 TFM represents the input/output relationship between 0(s) and R(s).

Recalling that

.f a(t) = [.f (t) a (t)] r  (5.1-8)

then

( (t) = n a (t) (5.1-9)

where

H3=[0 I,,]
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Premultiplying both sides of equation 5.1-5 by H 3 and substituting the Laplace

transformation of equation 5.1-9 results in

R U )S G3(s ) =H3(sl -F)I (5.1-10)

Combining equations 5.1-3, 5.1-4, 5.1-7 and 5.1-10 results in

fs = I[H3(sI -Fa)-IK I I[I + H2(sI - Fa)-IK] -'[HI(sI - F)-IG] (5.1-11)

Equation 5.1-11 gives the m x m TFM between estimates of the system inputs

and the actual system inputs. Ideally, this matrix should be the identity matrix indicat-

ing perfect estimates of the system input. However, the system structure may preclude

achieving a perfect es:imate without time lag.

Ex,' n ation of equation 5.1-11 shows that, in fact, if the overall transfer

matrix is the identity matrix, then the combined G3 (s) and G 2 (s) TFM can be viewed

a, the left inverse TFM of G 1 (s). Wolovich [1974] shows that this left inverse exists

if and only if the rank ( G 1 (s) ) = m. Therefore the existence of the left inverse

requires m < 1. If the left inverse is used, then the combined G 3 (s) G 2 (s) TFM can be

viewed as performing system deconvolution.

The general rule of thumb [Luenberger, 1971 ] for observer gain selection is to

select values that ensure that the observer dynamics are significantly faster than the

system dynamics. To achieve this end, the designer evaluates the observer eigenvalues

to determine their location in the left half s-plane for the continuous case. However, if

the observer is to be used as an integral part of a system controller, the stability mar-

gins ensured under full state feedback are no longer guaranteed. In fact, as shown by

Doyle and Stein [1979] for the continuous case, the resulting stability margins may be

wholly unacceptable. Under these conditions, the stability margins can be recovered by

selecting the gains based on a Kalman filter implementation with the process noise
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strength asymptotically approaching infinity. A filter designed with this condition is

referred to as a Fisher filter, and as will be demonstrated, yields an ideal augmented

observer for systems with unknown exogenous inputs.

In order to evaluate the effects of infinite process noise intensities on the TFM

of equation 5.1-11, parameterize the observer gain as a function of a scalar q such that

lim - = GaW (5.1-12)
q --*0 q

where G a = [ 0 1rm IT and W is any non-singular m x m matrix. Substituting equation

5.1-12 into equation 5.1-11 results in

Jim' U Sa = q - 3S -ai + H 2 (s l - F a)-I. "

SH 1(sI - F)-IG] (5.1-13)

= [H 3(sI -Fa)-IGaW] [H 2(sI -Fa)-IGaW - 1

Since W is assumed non-singular, equation 5.1-14 simplifies to

Jim U = H3(SI -Fa)-Ga] H 2(sI -Fa)-IGa]-.

EHi(s1 -F)-IG] (5.1-15)

It is now shown that the TFM given by equation 5.1-15 simplifies to

lim U. =I,,, (5.1-16)q--- U, ()
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To demonstrate that equation 5.1-15 simplifies to equation 5.1-16, let equation

5.1-15 be rewritten as

lim Us) =}G3"(s)G2'(s)Gl(s) (5.1-17)
q -400U (

where

G3'(s ) = H3(sI - F)-lGa (5.1-18)

GA,S) = I[n2(si -_Fa)_la a] -1(5.1-19)

G I(s) = H I(sI - F)-IG (5.1-20)

Recall that the above matrices are partitioned as

Fao 0] Ga=[1o]

H 2 = IHI 0] H3 [O1 m.

The G 3'(S) TFM is obtained as follows.

G 3'(s)=H3(sI -Fa)-lGa

[(SI -F- 1(sI -F)I
1 0

G3 '(s ) rn (5.1-21)

S

The G 2'(s) transfer function is found as follows

G2 "(s)= [H2(sI -Fa)-Ga]-1

0 S
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G 2'(s) = s[ -I I(Sf - F)-IG] -1 (5.1-22)

Combining equations 5.1-17, 5.1-20, 5.1-21, and 5.1-22, demonstrates that

lira U-m  IM(5.1-16)q-- U (S )

It is now shown that for a square (i.e. m = 1) minimum phase system, a Kalman

filter implementation with infinite process noise will yield the values for K shown in

equation 5.1-12. This proof is attributable to Doyle and Stein [1979]. Using the con-

tinuous Kalman filter notation previously defined, let

K (q) = P (q)HTR-1 (5.1-23)

with P(q) defined by the continuous algebraic Ricatti equation

FP + PFT + Q (q) -PHTR-1HP = 0 (5.1-24)

Let the process noise be represented as

Q(q)=Qo +q 2GVGT (5.1-25)

where Q0 represents the nominal plant noise and V is any positive definite symmetric

matrix. Note that for q = 0 the filter gains are simply the nominal Kalman filter gains.

To examine the effect on the filter gains as q asymptotically approaches

infinity, divide both sides of equation 5.1-24 by q2

F(4 ).)+(.4 )FT + Qo

-.q2()HTR-1H()= 0 (5.1-26)

Kwakernaak and Sivan [19721 demonstrate that

P =(5.1-27)
q --"- q

whenever the transfer function H (si - F )-'G has no right half plane zeroes.
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Therefore,

limq2(-. )HtR-IH( )=GVGT  (5.1-28)

or in terms of equation 5.1-23

-- KRK = GVG T (5.1-29)

For this to hold requires
lim GV 1/2(R 1/2)- (5.1-30)

q---q

Since it has been assumed that both V and R are positive definite matrices then the

matrix W from equation 5.1-12 exists and is invertible.

Verification of the augmented observer approach is performed with a steady

state cc - 3 - y tracking filter. The point-mass model dynamics are

. (t) = 0] x) [ O u(t) (5.1-31a)

z(t)=[1 0 X(t) (5.1-31b)

This model has position and velocity as elements of the state vector, with an

acceleration input. In the filter implementation, only position measurements are avail-

able.

Using this model leads to the following augmented observer matrices.

[010] [o
Fa = I 1 G a = 0

H2=[1 0]

H 3 =[0 0 1]
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Since the model describes a single input-single output relationship, the TFM of

equation 5.1-17 simplifies to a scalar transfer function. Substituting the observer

matrices into equations 5.1-18, 5.1-19, and 5.1-20 gives

G 3'(s)=H 3(SI -Fa)-IGa (5.1-32)

1 1 1

= 001] 0 - 1 0

0 0 --
s

G 3'(S) (5.1-33)S

G 2'(s)= [I H 2(sI -Fa)-IGa] - 1 (5.1-34)

-1

1 1 1

=" 1 0 0 s 2-
0 0 k-

S

G 2'(s) = S 3 (5.1-35)

G t(s) = H 1 (sl -F)-G (5.1-36)

1 0 S T-
1S

I(s) = 1--  (5.1-37)

Combining the results of equations 5.1-17, 5.1-32, 5.1-34, and 5.1-37 confirms the the

achievement of a unity TFM.

m -S= G 3 '(s)G 2'(s)G 1 (s) = 1 (5.1-38)SI
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5.3 Discrete Observer Design

The discrete augmented observer design is accomplished using a procedure

that parallels the continuous observer design. Figure 5-3 represents the time domain

block diagram for the augmented observer implementation. The concatenation of the

state and input estimates results in the n+m augmented state vector as shown.

The governing equations for the system depicted in Figure 5-3 are

System Dynamics

x (k+l) = Dx(k) + Fu (k) (5.2-1a)

z (k) = H Ix (k) (5.2- lb)

Observer Dynamics

j-a (k +l)4-aa (k) (5.2-2a)

.fa(k+l)=a(k+l)+K r(k+l) (5.2-2b)

r(k+l)=z(k+l)-H 2 a(k+l) (5.2-2c)

where

qOa = D lr K = K1 H= [I0

where x . R" = system state vector, u c R m = unknown exogenous input vector. The

observer vectors a and j a E Rn+m represent the state vector estimate. The vectors
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Figure 5-3 Discrete Augmented Observer
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z c R1 and r £ RI represent the system measurements and residuals. For the purposes

of the present analysis, the system is assumed to have as many inputs as outputs (i.e. 1

= m). The associated matrices are dimensioned to ensure compatibility.

In order to determine the accuracy of the input estimation, it is necessary to

find the overall transfer function matrix between u(k) and i! (k). As shown in Figure

5-4, this requires that intermediate transfer functions be found.

A

Figure 5-4 Discrete Frequency Domain Transfer Function Matrices

The transfer function matrices (TFM) depicted in Figure 5.4 represent the

appropriate z-transform input/output relationships. The overall input/output transfer

function matrix is

-4= G 3 (z)G 2(z)G 1 (z) (5.2-3)

The individual transfer function matrices must be determined from the system

shown in Figure 5-3, and described by equations 5.2-1 and 5.2-2.
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G I (z) Transfer Function Matrix

The G I (z) TFM represents the input/output relationship between U(z) and

Z(z). This is found in a straightforward fashion by applying z-transforms to equations

5.2-la and 5.2-lb.

Z~z)=Glz)=l~zl-(D-Ir(5.2-4)

G2(z) Transfer Function Matrix

The G2 TFM represents the input/output relationship between Z(z) and R(z).

The z-transform of equation 5.2-2c yields

R (z) =Z (z) -H 2 Xa (Z) (5.2-5)

Combining equations 5.2-2a and 5.2-2b provides

Ia'(k+]) afc.e(k) +Kr(k+l) (5.2-6)

P0 (z) =(zI - V~)1IKzR (z) (5.2-7)

Premultiplying equation 5.2-7 by H2 Oa gives

H 2Xa(z ) =H 2 (b(Zl - (Da)-IKR(Z) (5.2-8)

Substituting equation 5.2-8 into equation 5.2-5 results in

; R }= G 2(Z) [I + H2 0a (Z 4ba)-1K] 1(5.2-9)

G3(z) Transfer Function Matrix

The G3 TFM represents the input/output relationship between UO(z) and R(z).

Recalling that
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then

Sk) = H 3.a (k) (5.2-11)

where H 3 =[ 0 l

Premultiplying equation 5.2-7 by H 3 gives

z= G3(z) = H 3(zl - Da )-IK z (5.2-12)

Combining equations 5.2-3, 5.2-4, 5.2-9, and 5.2-12 results in

S= [H 3(zI -(a)-IK z] [I + H2 a(zI -Da)-1K] -1 (5.2-13)

[HI(zI - .4)-1F]

Equation 5.2-13 gives the m x m TFM between estimates of the system inputs

and the actual system inputs. Ideally, this matrix should be the identity matrix indicat-

ing perfect estimates of the system input. However, the system structure may preclude

achieving a perfect estimate without time delay.

As was the case with the continuous observer, the designer selects observer

gain values that ensure that the observer dynamics are significantly faster than the sys-

tem dynamics. To achieve this end, the designer evaluates the observer eigenvalues to

determine their location in the unit circle of the z-plane for the discrete case. How-

ever, if the observer is to be used as an integral part of a system controller, the stability

margins ensured under full state feedback are no longer guaranteed. The stability mar-

gins can be recovered by selecting the gains based on a Kalman filter implementation

with the process noise strength asymptotically approaching infinity. A filter designed

with this condition yields a dead-beat augmented observer for systems with unknown

exogenous inputs.
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In order to evaluate the effects of K on the TFM of equation 5.2-13, first

parameterize K as a function of a scalar q such that K = K(q). Select K so that

lim K = Fa W (5.2-14)
q i

where ra = I F lm IT and W is any non-singular m x m matrix. Substituting equation

5.2-14 into equation 5.2-13 results in

Since W is assumed non-singular, equation 5.2-15 simplifies to

-lir{- } = [zH3 (zI - ja)-la] [W- + H 2 Da (zi -Da )-1Fa] -q--4-* U (Z)

I H I(zI )- 7 (5.2-16)

It is now shown that the TFM given by equation 5.2-16 simplifies to

lir UZ = 1 (5.2-17)

To demonstrate that equation 5.2-16 collapses to equation 5.2-17, let equation

5.2-16 be rewritten as

lim Uz =G3"(z)G2'(z)GI(z) (5.2-18)

where

G 3'(z) = zH 3(zJ - V) -lI r a (5.2-19)

G 2'(z)= [W- +H 20a(zI -Oa)-Ira] (5.2-20)

G t(z) = H &I - )-1- (5.2-21)
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Recall that the above matrices are partitioned as

H 2 =[IH 1o0 H 3 =[O Im]

Substituting in the partitioned matrices for Fa and H 2 with W - (HF)-1

(which is assumed to be full rank) results in

K [] (H I F)-I

The G 3' TFM is obtained as follows.

G 3 ' = zH 3 (zI - 4.)a)-Ifa

1Z 0 [M(zi -I (zi - ()- 1 F(ZI -Im r
[(z - l )-1 

G 3'= z (zl - I, 1Y- (5.2-22)

The G 2' transfer function is found by first evaluating

H 20a (zJ (Da )-Ira =

[H o D r~ LI -@ (D (zi-o r(zi im ]r~
=H cl'(zl-)I r~E Im + (zJ 1)-,} +Hlr(zJ -imy 1

Using the identities

1m + (zI - 1m)-1 = z(zJ -1,m) -

risu lt)--=Hl(zl -i,)-n

results in
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H2 V$(ZI -V )-Ira

Adding W-I and taking the inverse results in

G 2 '={H Ir +(zH ict(zI - DY'F+ HiF)((zi -iri )}

=(ZI -M){H I(zl + z 4(zI } D-1)-

Noting that

then

G2= Z-2 (ZI - Im)(H i(zI - ~1 )f(5.2-23)

Combining equations 5.2-18, 5.2-21, 5.2-22, and 5.2-23, demonstrates that

lrn rjU z=II (5.2-17)

To determine the Kalman filter behavior as process noise levels approach

infinity (i.e. a Fisher filter), examine a square (m = 1) minimum phase system. The

minimum phase requirements ensures a dead-beat respo, Ise [Kwakemnaak and Sivan;

1972]. The state gain and covariance equations for the standard Kalman filter are:

Predicted Error Covariance

M = 4>apV4,+ FaQQVFa (5.2-24)

Kalman Gain
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K =MHI(H2MHj +R)-' (5.2-25)

Filtered Error Covariance

P = (I - KH 2)M (5.2-26)

where

M = predicted state error covariance matrix prior to system measurement.

P = filtered state error covariance matrix at time of system measurement.

Substituting equation 5.2-25 into 5.2-26 gives

P =M - MHj(H2MH,+R )-IHz?,tf (5.2-27)

Substituting equation 5.2-27 into equation 5.2-24 produces the discrete Ricatti

equation governing the predicted error covariance.

M = OaMV a - aMHI(H2MHI +R)-'H 2M V
T + aQFaT  (5.2-28)

Let Q = Q0 + q 2 I, and divide equation 5.2-28 by q 2

M =.I~ Mc~a T _ Ia4MH I(H 2 4MHI + R 1H2 M vT

+ -a(Qo +I)Far  (5.2-29)

Taking the limit as q approaches infinity gives

M_ = VMoqrar - VaM.JI(H 2MHl)-H 2M aT + FaFaT  (5.2-30)

where M-, = lim M

Now assume M = a FaT and substitute this into equation 5.2-30

Fa rar = o{FaFa-FaFarHI(H21FaFaTH D-'H 2Fa ar +Faar (5.2-31)

If H 2 a is square and full rank, then M. = p Fa r is a satisfactory solution.
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The resulting gain for the Fisher filter is found by multiplying and dividing the

right hand side of equation 5.2-25 by q 2 and taking the limit which leads to

K =M*Hj(H2MH ) -  (5.2-32)

Substituting M = F a results in

K = Fa (H 2r a )-i (5.2-33)

Therefore, the selection of the gains based on a Fisher filter satisfies the

parameterization of K shown in equation 5.2-14.

The verification of the augmented observer approach is now shown for the

discrete x - - y tracking filter. The point-mass model dynamics are

x (k+l) = I '] x(k)+ [,21 u(k) (5.2-34a)

z(k)=[1 0] x(k) (5.2-34b)

This model has position and velocity as elements of the state vector, with an

acceleration input that is assumed constant over the sampling period T. In the filter

implementation, only position measurements are available.

Using this model leads to the following observer matrices.

V = 01T Fa  T K =(5.2-35)

Since the model describes a single input-single output relationship, the TFM of

equation 5.2-13 simplifies to a scalar transfer function. Substituting the observer

matrices into equations 5.2-4, 5.2-9, and 5.2-12 gives

G ~)=(T2/2)(z + 1)G t(z ) = +z-1
(z - 1)2

(Z - 1)
G2 Z) 3 - (3 - a- O3T -yT 2/2)z7 + (3 - 2a- P3T + yT2/2)z + (a - 1
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G 3(z)=z-

Combining these transfer functions results in

fiTS= y(T2/2)z(z + 1)
z3 -(3-a-3T-yT 2/2)z 2 +(3-2cx-T+/yT 2/2)z +(a- 1)

Kalata [1984] provides tracker gain equations for this model. Using his results,

a process noise limit analysis can be performed to evaluate the Fisher filter gains. This

leads to

a=l

P = 2/T

y= 2/T 2

Substituting these gains values into the input estimator transfer function pro-

vides

A

(5.2-35)

Gleason and Andrisani [1985] determined closed form solutions to the above

model with Ia = [T3/6 T 2/2 T]. ?tote that this is the time integral of the input matrix

suggested by equation 5.2-35 . The infinite process noise analysis leads to differing

gain values which will not lead to a pure time delay transfer function. Therefore, the

selection of ra will affect the overall TFM found in equation 5.2-13.

5.4 Summary

This chapter details an improved methodology for continuous and discrete

observer design for systems with unknown exogenous inputs. The methodology

requires that the state vector be augmented with the unknown inputs. When the input
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dynamics are appropriately modeled, and the augmented filter is implemented as a Kal-

man filter with infinite process noise levels (i.e. A Fisher filter), tb-i the r" ,,iung input

estimates to true input transfer functions are demonstrated to be unity in the continuouv

case, and unity with a sampling period delay in the discrete case. Previously, observer

design was based on the rule of thumb of selecting the gains to ensure that the observer

dynamics were "faster" than the system dynamics. This chapter presents a systematic

method for selecting he gains when unknown exogenous inputs exist. The drawback to

this method is the high observer bandwidth that results when a Fisher filter is imple-

mented. Under these conditions, extensive noise corruption of the input estimates can

occur. Therefore, the designer must make an appropriate tradeoff between observer

response time and the degree of permissible noise degradation.

The methodology is presented in a generalized format. The analytical demons-

trations of the method is shown using typical tracking filter implementation for systems

with unknown inputs.
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CHAPTER 6
TRACKING FILTER ERROR COVARIANCE ANALYSIS

6.1 Introduction

The nonlinear models developed in Chapter 3 requires tuning the process noise

to account for unknown inputs and structural dissimilarities between the various order

trackers. This chapter investigates an error covariance analysis tool for variable order

trackers. The approach takes advantage of the generalized upper triangular structure of

many tracking models. This leads to a single equation that describes the difference in

the error covariance histories for higher order trackers versus a reduced order tracker.

This in turn, leads to method for selecting process noise levels to achieve "error covari-

ance equivalent tracking filters". The selection of the process noise accounts for the

structural differences between trackers. Both continuous and discrete error covariance

analysis techniques are developed. The techniques are then applied to the analytical

closed form solutions found by previous researchers. The validity of the results is

confirmed with these closed form solutions.

6.2 Continuous Error Covariance Analysis

To generalize the approach taken herein, we will work with the same general

model structure, and examine two models referred to as a higher order model (HOM),

and a reduced order model (ROM). As examples of a higher order model and a

reduced order model, the cc - 3 - y tracking filter corresponds to the HOM, and the

a - (3 tracking filter qualifies as the ROM.
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HIGHER ORDER MODEL (HOM)

1= [F0 
F 22

][X] + [W1 ; [wj "[ 0] ' [QI2] (6.2-1a)

z = H1 12] +v v -N(O,r) (6.2-1b)

REDUCED ORDER MODEL (ROM)

.T- = F I ."j+ ;_ W-N (0,Q) (6.2-2a)

z = H i 1 + v ; v -N(O,r) (6.2-2b)

where w 1, w2 and v are white noise Gaussian noise inputs with the notation represent-

ing [Gelb; 19741

E{v(t)} =0

E {v (t)v (,)T} = R 5 (t - r)

where 8 (t - t) is the Dirac delta function.

The partitioning of the HOM is done to emphasize that the HOM states consist

of those states which are identical to the states of the ROM (i.e. x I ), and those states

which are in addition to the states of the ROM (i.e. x2 ). States denoted with a bar (i.e.

.T' ) are generated by the ROM as shown, while those without the bar are generated by

the HOM. It is important to note that both models use the same measurement

sequences, but can use different input noise sequences, denoted by w, and w2 for thc

HOM, and by iW for the ROM.

The tracking filters for these models are standard Kalman filters based on the

appropriate motion model that is selected and are given as follows.
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HOM TRACKING FILTER

0 , _2 [, ]11113.
F 2 + K z- (6.2-3a)

K 1 [P11 P12  H R-1 (6.2-3b)2J PT2 P22 [ HI

P1ii~1 1 [F 1, F121 [P11 P12  [P11 P121 FTj1  01
[PT2 P22  0 ~ F22 [P2 P221 + [P{ P 2 2 1 F{2 F12J +

E1 Qi Q121 P11 P121 HT 1- H, H2 11 P12  (.-c
Q 21 Q 22J -PT 2 P22J HR HI [PT2 P221

ROM TRACKING FILTER

.T, 1 II- + Kz -H j-i (6.2-4a)

K =PHTR1  (6.2-4b)

P =FlP +PFFT +Q-P/HTR- 1H1/P (6.2-4c)

For the above tracking filters the following definitions apply.

K I = HOM Kalman gain applied to the states of xI

K 2 = HOM Kalman gain applied to the states of x2

K = ROM Kalman gain applied to the states of f,

P (t)j = E[X,(t ) -.f,(t)I [xj(t)-.j(t)]TI i=1,2 j=1,2



138

P (t ) = E{ [X l(t ) - 1l(01) [X (t ) - il(t0)]T

It should be noted that P11 and P corresponds to the error covariances of the

states contained in xI given x 2 for the HOM and and the states in xI for the ROM.

Under certain conditions, (i.e. by the judicious selection of Q 1 and Q) the error

covariance of the ROM (P ) can be equated to the error covariance of the HOM (P 11).

The equating of the error covariances for the HOM and ROM is achieved by

analyzing the equations for each. Examining the individual components of the error

covariance equations gives

P 11=F1  11 + F2 P]J2 +P 11FJ1 + P 12Ff2 + Q 11-P1 1  (6.2-5)

P 12=F11P 12+F1 2P 22 +P 2F 2 +Q 12 -P 1 2  (6.2-6)

PT2 = PT2FT1 + P22Ff2 + F22PT2 + Q21 - P 21  (6.2-7)

P22 = F 22P 22 + P 22FJ2 + Q22 - P 22  (6.2-8)

P =F11P +PF 1 +Q-PHfR-1 H1IP (6.2-9)

where

P1 1 = P11H TR-1H 1P 11 + P12H JR -1HIP 11 (6.2-10)

+P 11HfR-IH 2PT2 +P 12HJR- 1H 2PJ2

P 12 =P 11HTR- 1H 1P 12 +P 12HJR-'H1P12  (6.2-11)

+ P 11HTR-1H 2P 22 + P 12HJR- 1H 2P22

P21 
= PT2HTR-1H 1P 11 +P 22HR-IH1P 11  (6.2-12)

+PT2HfR- 1 H 2PT2 +P 22HJR- 1H 2P 2

P2= P=T2HR - 1H 1P 12 + P 22H1R - 'H 1P 12  (6.2-13)

+ P12HTR-'H 2P22 + P 22HIR-1H 2P 22



139

To determine the differences between the error covariances-of the equivalent

HOM and ROM states, we define AP = P11 - P, and carry out this operation on the

above equations.

AP =F 1 AP +APFT1  (6.2-14)

+{Q11-Q +F 2Pf2 +P1 2Ff 2 -Pll+PHR-1HI/7

The above matrix differential equation describes the error covariance differ-

ence for the common states in the HOM and ROM. The solution of this equation

yields the time history of this error covariance difference (AP (t)).

Obviously AP (t) is dependent upon the term in brackets which may be viewed

as a forcing function for the matrix differential equation. Now, if the initial conditions

on the common state error covariance are identical (i.e. P(0) = P 11(0)) and the forcing

function can be made identically zero, then AP (t) = 0 for all time, which implies

P11(t)=P(t) for all time. This possibility is now examined for the a-3 and

a - y tracking filters.

Recall that the a - 13 filter uses the states of position and velocity, while the

x - 13y-, filter uses the states of position, velocity, and acceleration. Both tracking

filters are supplemented with measurements of position. In equation form these models

are given as

a -13 Tracking Filter

)I =  1 (t )] + [ ;w-N (O,q,) (6.2-15a)

Z = [ 1 ] +v() ; vvN(O,r) (6.2-15b)

where w,, and vv are zero-mean uncorrelated Gaussian noise sources with noise inten-

sity of q, and r, respectively.



140

ac - - Tracking Filter

[(t)] 0 1 0[x ] [ ol
i(t)J =[ 0 ][1 (t) + 0 0 -waN(O,qa) (6.2-16a)

L 0 0o] LN(,r) (6.2-16b)

L (t)

where wa and Va are zero-met n uncorrelated gaussian noise sources of intensity qa

and r respectively.

For these x - 03 and (x - f3 - y class of tracking filters we have the following

matrices.

0~=

Hi[1 o] H 2 =0

Q 1_00 ] Q 12=[00] Q22 =q

R=r

(Note : lower case variables denote scalars)

Substituting these values into the appropriate equations gives the following

relationships.

AP = F11 AP + APF 1 +QII-Q (6.2-17)

+F 1 2P[2 +P 1 2Ff 2 -P 1 1HfR-IH1 P1 +PHrR-H 1P
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Substituting P = P1I1 - AP' into the above gives

AP' = (F I1 - P IHTR 'H I)AP + AP (Ff1 - HTR'IHP 11 ) (6.2-18)

+ APHfR -IH AP

+{Q iQ + F 2 P 2 + P 12FT2}

Again, we note that if AP (0) = 0, and the term in brackets can be driven to

zero, then the error covariance AP' (t) = 0 for all time. This requires

Q =Q1 1 +Fl 2Pf 2 +P 12 FT2  (6.2-19)

To verify the results of this equation, we use the results found in Fitzgerald

[198 1]. For the a x - y tracking filter, Fitzgerald found the following steady state

error covariances.

[2(qr5)116 2(qr2)13~ (qr)112 1
pil =[2(qr2)"/3 3(qr)1'2J P12= 2(q2r )113J

Solving for Q gives

Q= 4 1 22 = Foo [] o ] [(r112 2(q2r)1I3l

E(qr )112 1I
+ 2(q2r )1 /31 [0 0 1
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The resulting elements of Q are

0.1 =0

0.12 -(qr)"2

q22 =4(q2r)1/

Substituting this process noise intensity matrix into the matrix differential

equation for P yields the identical steady state solution to P I,, again confirming the

results. A similar analysis for an a - P, and an a tracking filter can also be performed.

Examination of the above results reveals a Q that is not a positive semi-

definite matrix, but is in fact indefinite. The indefiniteness is due to the cross correla-

tion terms that are introduced. The choice of this Q still leads to achieving a positive

definite error covariance for the ROM. Kailath and Ljung [1976] demonstrate that the

asymptotic behavior of the general constant coefficient matrix Ricatti differential equa-

tion does not necessitate a positive semi-definite Q for convergence of the Ricatti equa-

tion to c-,verge to a positive definite solution. Although exact error covariance

equivalence will not occur if the cross covariance terms are set to zero, in many cases

good results will be achieved.

It is also noted that since the steady state error covariance values are

equivalent, an examination of the Kalman gain equations shows that the corresponding

steady state Kalman gains are equal. Tracking filters with equivalent steady state Kal-

man gains for position and velocity states are evaluated in the frequency domain by

Andrisani [1985].
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6.3 Discrete Error Covariance Analysis

As with the continuous error covariance analysis, a generalized approach is

taken, in order to take advantage of the upper triangular structure of the discrete

dynamic models associated with tracking filters. The generalized results are then

verified analytically using steady state closed form solutions for tracking filters. The

results are also verified numerically and graphically using higher order tracking filters.

The development of the discrete error covariance analysis is more difficult and

complex due to the two part (predicted/filtered) estimates associated with discrete Kal-

man filters. For the discrete error covariance analysis, only the equations for the gains

and the error covariances need be considered. In order to facilitate the analysis, it is

convenient to develop the error covariance in terms of a matrix Ricatti difference equa-

tion that is solely a function of the predicted error covariances.

The Kalman filter equations for the error covariances and gains are

Predicted Equations

M (k+1) = OP (k)IT + FQ rT (6.3-1)

Filtered Equations

K(k+l)=M(k+I)HT[HM(k+)HT +R] (6.3-2)

P(k+l)=[I -K(k+)H]M(k+l) (6.3-3)

where

M(k+l) = predicted state error covariance at time k+l given measurements to

time k.

P(k+l) = filtered state error covariance at time k+l given measurements to

time k+l.

K(k+l) = filter gain at time k+l

Substituting a delayed filtered state error covariance equation into the

predicted state error covariance equation results in a discrete time matrix Ricatti equa-

tion for the predicted state error covariance.

M(k+l) = OM(k)DT - OM(k)HTIIHM(k)HT +R]-IHM(k)DT (6.3-4)

+rQ1 T
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To exploit the structural nature of the previously described tracking filters, it is

noted that all models used here result in an upper triangular matrices to describe vehic-

ular motion.

Generalizing the approach taken herein , we will work with the same general

model structure and examine two models referred to as a higher order model (HOM),

and a reduced order model (ROM). The models have the following general structure

Higher Order Model (HOM)

x(k+1) =Dx(k)+ Fw(k) w(k) - N(O,Q(k)) (6.3-5a)

z(k)=Hx(k)+v(k) v(k)- N(OR) (6.3-5b)

where the matrices (D, F, H, and R are time invariant. The system is partitioned in the

following manner

[x(k) 1 [ct D 11 0)121
X~) [ 2(k) 0 (221

r= H H= H,0

Reduced Order Model (ROM)

.-j(k+1)=4)1 1t.-(k)+FiW(k) iV(k) - N(O,Q(k)) (6.3-6a)

z(k)=Hlxi~k)+v(k) v (k) - N (0,R) (6.3-6b)

The partitioning of the HOM is done to emphasize that the HOM states consist

of those states which are identical to the states of the ROM (i.e. x 1), and those states

which are in addition to the ROM (i.e. x2). States denoted by the over-bar (i.e. x'j) are

generated by the ROM as shown, while those without the over-bar are generated by the

HOM. It is important to note that both models use the same measurement sequence,

but can use different process noise sequences denoted by w(k) for the HOM and iW(k)

for the ROM.

Using the HOM and the ROM in the Kalman filter results in the equations
detailed in Tables 6-1 and 6-2.
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Table 6-1 HOM Tracking Filter

Predicted Equations

[MIIk±I) M 2(k+1) = DI 0 12 M1(k) M 2(k) OT 0 rLMT2(k M22(k+1) 0 (D2 MT2(k) M 2(k) 4j'j 01+ 12 'T "IjE II 0121[ M~1(k) M 12(k)1 [Hf] r M11(k) M 12(k ol ,
0 (D22[ Mf 2 (k) M22(k)[0 lv [HI 0j M12(k) M22(k)J (DT201

-[HIMuII(k)Hf +R] -

Filtered Equations[ 1(k-4-) M11(k+1) M12(k+1)1 HT]~M kH RK 2(k+l)] ML2(k+1) M 22 k+1)J 0 1 [HI 1(k)H +j]-

P{'2(k+1) P22(k+1) [0 I] [(k+l)J I Ol [Mf 2 (k+l) M22(k+1)J

where

K1  HOM Kalman gain applied to the states ofx I

K 2 =HOM Kalman gain applied to the states Of X 2
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Table 6-2 ROM Tracking Filter

Predicted Equations

M(k+1) = cI11 (k )IT - D11M (k)HA MHM(k )4D + FQ1 T

M=[H 1 ,M(k)Hf + R ]1-

Filtered Equations

k(k+1)=M(k+l)H[Hn1 M(k+l)Hj +R]-1

PF(k+1) = [I - K(k+I)H1IM(k+1)

where

K = ROM Kalman gain applied to the states of T'
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Carrying out the matrix operations in Tables 6-1 and 6-2 for the predicted

error covariances gives

M 11(k+l) =
11 M 11(k)(DT +D 12MT2 (k)(D~j

+ O11M 12(k )OJ2 + O12M 22(k )Oi/2

- DIIM II(k)HTMHI1M II(k)41T

- DIM 11(k)H MHIM 12 (k)(D 2

- (D 2MT2 (k)Hf MH 1M 11(k )OTj

- ( 12M 2 (k )H I MH I M 12(k ir2

+ 71Q (k)Fjr  (6.3-7)

M 12(k) = D11M 12(k)cf2 + 012M22(k)02

-[ 1 1 M 11(k) + ( 12MT2 (k)]HT MH 1M 12(k)0t2

+ r 1 Q (k)r'Jj (6.3-8)

M22(k) = (22M22(k)0 2

+ (022M2 (k)HTMH 1M 12(k)(I 2

+ 172Q (k)F]j (6.3-9)

W(k+l) = 4 11M(k)(Dj' - c 1l,(k)HTMH,)1 (k)4Tj + FQ(k) r (6.3-10)

To determine the difference between the error covariances of equivalent HOM

and ROM states, we define AM = M I M and carry out this operation on the above

equations.
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AM(k+1) = 1 AM (k)4f1I +(Dl 2Mf 2 (k)')Ij

+ I IM 12 (k)4D 2 + cD12M22(k)cIDf 2

- 41 1 M1 1 j(k)HjMH1 Mjj(k)47j

+ 41 1 MI(k)HTMHjiM(k)Oji

- 41 1M1 (k)HTMH 1M 12(k )4DT

- d1 2Mj 2 (k )HTMH 1M 1 (k)O4j

- (D1 2Mf 2 (k)HTMHjM 12 (k)4)T2

+ f1 Q (k)-T - FQ(k)Fr (6.3-11)

Substituting M (k) = IMI (k) - AM (k) in the fourth line of equation 6.3-11 results in

AM (k+1) = 41 1jAM (k)(DTj + 1M2(k(T

+ OIIM 12(k )(DTj + 41I2M22 (k)<D1

- (DI 1M (k)Hf [M - MIH 1M 1 (k)DTI

- (D1 1M 11(k)Hf MH AM (k)4'j'j

- 0 1 AM (k)HT MHIM 11 (k)4T

+ (1IAM (k)H{MH IAM (k)DT

- I IM I I(k)HT MHIM 12(k)(DT2

- 4'12Mf 2 (k)H MH IM I1(k)Di'i

- ct1 2Mf 2 (k)HTMH1 M12 (k)yDT2

+ r Q (k)'T - Fa(k)Pr (6.3-12)

By noting that

M(k)- M(k)= [H 1 M1 1(k)Hf +R]1 - -[H 1 MW(k)Hf +R]'I (6.3-13)

and performing pre and post muir 'cation by [HI)M(k)HT +RJ and
[H 1Mn1 (k HT~ + R] respectively gives
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[HIM-(k)H{ +R I [M(k)-M(k)j [H1M 11(k)HT +R I

= [H 1 (k)HT +R -HIM 11(k)IH- -RI

=H [M(k) - M 1 1 (k)]HT = - JAM (k)]H (6.3-14)

Reversing the procedure by pre and post multiplying by [Hl1 M(k)Hf +R] - I and

IH 1M 11(k )Hf + R -I respectively gives

M - M -MH 1 AM(k)nl{M (6.3-15)

Substituting this relationship into the previous equation for AM (k+l) and combining

terms yields

AM (k+1) = (Di[AM (k)

+ M 11(k)HT MH1 AM (k)HIMHIM I1 (k)

- M 11 (k )H MH 1AM (k)

- AM(k)HTMH MI (k)

+ AM (k)HfMH AM (k)l4j'i

" 4-12[Mf2 (k) -MT2(k)H'MH IM11(k)]d41

+ D11[M 12(k) - M 11(k)HfMH IM 12(k)] 12

+ ( 12[M22(k) - MT2 (k)HTMH 1 M 12(k)]T 2

+ F1 Q (k)r- FQ(k)F r  (6.3-16)

The above matrix difference equation describes the error covariance difference

for the common states in the HOM and the ROM. The solution of this equation yields

the time history of AM.

Obviously AM (k +1 ) is a function of AM (k), and the remaining terms not con-

taining a AM (k) may be viewed as the forcing function for the matrix difference equa-

tion. Now if the initial conditions on the common state error covariances are identical

(i.e. M (0) = M 11(0)) and the forcing function can be made identically zero, then

AM (k) = 0 for all k > 0 which implies M 11(k) = M (k) for all k >_ 0, which is the

requirement for an error covariance equivalent model. To achieve this, requires that

the forcing function be precisely zero or
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FQ(k)FT = 12[MT2 (k) -Mr 2 (k)HMH 1 M (k)]Di'

+ O11[M 12(k) - M1 1(k)HTMH 1M 12(k)]DT2

+ 12[M 22(k) - MT2 (k)HTNMH 1M 12(k)]'.Z1

+ 1 Q (k)r (6.3-17)

The above equation can be solved for FQ(k )F in order to force AM (k) = 0

for all k > 0. This solution is a function of the predicted state error covariances.

Simplification is achieved by substituting the filtered state error covariances for the
predicted state error covariances.

Recall

P (k) = M (k) -M (k)HT [HM (k)HT + R ]-IHM (k) (6.3-18)

Carrying out the partitioned matrix multiplication from Table 1 gives

P 11(k) = M 11 (k) - M 1 1 (k)HTM(k)H 1 M 11 (k) (6.3-19)

P 12(k) = M 12(k ) -M Ij(k),Hj M(k)H IM 12(k ) (6.3-20)

PT2 (k) = Mi2 (k) - M2 (k)HT M(k)H 1 M 11 (k) (6.3-22)

P 22(k) = M 22(k) - M{ 2 (k)HI M(k )H 1M 12(k) (6.3-22)

Substituting these relationships into the forcing function based on the
predicted state error covariances provides the solution in terms of the filtered state

error covariance.

['Q(k) r = 1 2Pf 2 (k)4f1 +0 11 P12(kP +

4)12P 22(k )(DI2 + 171Q (k )F1 (6.3-23)

In order to verify these results, the discrete error covariance analysis is applied

to the previously developed tracking filters. The application of error covariance
equivalent model will be demonstrated using the analytical steady state results of

Friedland [19731. An a - 03 filter will be used to obtain a position error covariance a

filter.
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For an c - 3 filter the following steady state relationships hold

(DI I IF T2

i = I  - HI=1

012 = T F2 =T=

(D22 = 1

R =o
[m1 m12]

M = T2 M22

y= -f- +2r [4 1+2r +1]2

oaT +112M 12 =  - -[41 + 2r + 1]2

r

m22= aa-' [41 + r + 1

= 11 P12]
P =P2 

P22

o [ 2r + 1]2
P11= [r++2+1+

_Ox~aT[ 1  +1-
P12 = '- [ l +2r +11 2

c2T 2 r--

P22 = T[Nf1 + 2r + 1]

where

Substituting these relationships into the equation for determining "QT using the

filtered error covariances gives
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T 202- axaaT 2 [NI" + 2r - 112r

+ + 2r - 1]

T 4 G
+7 a

Solving for o2 gives

2 = OYx a [1 +2r]
r

To verify that this process noise covariance yields identical predicted position error

covariance, we examine the steady state scalar Ricatti equation for an (x tracker.

= a
m + ax

Solving for fii gives

n= ~T~ + -(T22)
2 + 4T 202a

Substituting for a2 and performing the necessary algebraic manipulations results in

if= 221- +2r [r +2r +r +I
rT

Expanding m 11 will show that m I = m.

To examine the difference in time responses between the HOM and ROM

using a time-invariant process noise, we investigate an X - - y tracking filter and an

error covariance equivalent cc - P tracking filter.

Selecting a process noise covariance of oY2 = 100 and T = 1/30, the ox - -

matrices and steady state filtered error covariance matrices are

TT 2  HI=[0]

2 -F 2 T

4D22 = I
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6.449 6.448 3.2241
P = 6.448 9.781 6.557

3.224 6.557 6.611J

Substituting these values into the equations for Q provides

[.0038 .1185]PUT = .1185 .4445]

Figures 6-1 through 6-3 depict the filtered error covariance time responses for

the HOM o - 1 - , filter and the ROM ax - 3 filter. In all three cases the steady state

filter error covariance responses converge to identical values, with the a - 13 filter

achieving steady state values sooner than the a - j3 - ' filter.

6.4 Summary

This chapter outlines a methodology for determining the effects on the error

covariance history of variable dimension models. The methodology is accomplished

for both continuous and discrete models. The continuous methodology leads to a single

differential equation that describes the error covariance difference between the com-

mon states of a higher order model (HOM) and a reduced order model (ROM). The

discrete methodology leads to a single difference equation that describes the predicted

error covariance differences between common states of the HOM and ROM. Analysis

of these equations results in a means for selecting the process noise level for a ROM

such that an error covariance equivalent model is achieved for both the continuous and

discrete time cases.

The continuous/discrete methodology is developed for systems with general-
ized upper triangular dynamic matrices. The methodology is demonstrated with steady

state analytical and numerical examples for common tracking filters.
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CHAPTER 7
CONSTANT GAIN ANALYSIS FOR DISCRETE TRACKING FILTERS

7.1 Introduction

Vehicle tracking is often accomplished with a three state cc- 13 - y tracking

filter, where the states are position, velocity, and acceleration. Implementing this filter

requires the following design parameters:

1. Measurement sampling period C')

2. Process noise covariance (q)

3. Measurement noise covariance (r)

These design parameters in conjunction with the system dynamics are used solve the

associated time-varying tracking filter gain and error covariance equations.

In order to reduce computational burdens, these filters are frequently used with

constant gains. The constant gains are obtained by using the steady state results of the

tracking filter gain and error covariance equations. However, if the design parameters

are changed, the tracking filter gains and error covariance equations must be rerun to

find new steady state solutions.

This chapter examines the steady state error covariance equations and deter-

mines a closed form solution for the error covariance between the position and

acceleration states. This is accomplished by symbolically solving a steady state matrix

Ricatti equation and solving for the desired error covariance element. This results in a

quartic equation for the error covariance between position and acceleration which is

solely dependent on the design parameters (T, q, r). The appropriate solution of this

quartic is found using MACSYMA [1985]. MACSYMA is an interactive computer
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program written in LISP used to symbolically solve unwieldy mathematical problems.

Once the quartic solution is obtained, the remaining elements of the error covariance

matrix are easily calculated, and likewise for the filter gains.

The closed form solutions to the gains of the (x - P - y tracking filter facilitates

a limiting analysis. The limiting analysis is useful in the derivation of the Fischer

filters that were discussed in previous chapters. The state space representation for the

three state ot - - y tracking filter is given as

x (k+l) = x(k) + Fw(k) (7.1-la)

z(k ) = Hx(k) + v(k ) (7.1-1b)

where x(k) is a vector composed of position, velocity and acceleration; w(k)is a

discrete zero-mean white noise sequence with covariance q accounting for modeling

uncertainties; z(k) is a position measurement that is corrupted with a discrete zero-

mean white noise sequence, v(k) that has covariance of r, and

[IT T2/2lT/

0 0 1J T

The Kalman filter equations for the error covariances and gains are

Predicted Equations

M (k+l) = ()P (k) rT + FqF r  (7.1-2)

Filtered Equations

K(k+l) = M(k+I)HT[HM(k+I)HT + r] (7.1-3)

P(k+l)= [ -K(k+I)H]M(k+l) (7.1-4)

where
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M(k+l) = predicted state error covariance at time k+l given measurements to

time k.

P(k+l) = filtered state error covariance at time k+l given measurements to

time k+1.

K(k+1) = filter gain at time k+l

Substituting a delayed filtered state error covariance equation into the

predicted state error covariance equation results in a discrete time matrix Ricatti equa-

tion for the filtered state error covariance.

M(k+1)=OM(k)4T -. OM(k)HT[HM(k)HT +rI-IHM(k)DT (7.1-5)

+Fqf rT

7.2 Steady State Gain Determination

Since only steady state values are needed, the increment notation is not

reeded, and the filtered error covariance equation becomes

M = (DMDT - cMHT[HMHT + r]-IHMtT

+ Fq 1-

with

[M11 Ml2 M13]

M =/M 21 m22 I
m31 M32 m33

Expanding this equation in terms of its individual elements results in nine nonlinear

equation and nine unknowns. However, due to the symmetric nature of the Ricatti

equation only six nonlinear equation are need to solve for six unknowns. These equa-

tions are presented in Table 7-1.
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Table 7-1 Filtered Error Covariance Equations

m 11 = m 11 + 2Tn 12 + T 2m 13 + T 2m 22+T 3m 23 
+ (T 4/4)m 33

mA +2Tmllml 2 +T 2m62

ml, +r

T2 r Im 13 + T 3m 12m 13 + (T 4/4)mA
mll1 +r

+ T6 (7.2-1)

m 12 = m 12 + TM13 + Tm2 2 + (3T 2/2)m 2 3 + (T 3/2)m 33

m I Im 12 + Tm I m 13 + Tm 2 + (3T 2/2)m 12m 13 + (T 3/2)m
ioll +r

+ T5 (7.2-2)

M 13 = m 13 + Tm23 + (T2/2)m 3 3

m I Im 13 +Tm 12m 13 + (T 2/2)mA + T4 (7.2-3)
mrII + r --- !

m2 2 = m 22 + 2Tm23 + T2M33

_ m?2 +2Tmi12m13+T 2m + qT 4  (7.2-4)
roll +r 4

M23=M23 + TM33 - 1m12m 3+ Tm + VT (7.2-5)

m 33= m 3 3. + qT 2  (7.2-6)inll+r
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Obtaining a closed form solution for these equations requires isolating indivi-

dual error covariances elements. This is achieved by performing cancellations and

algebraic manipulation of the equations (7.2-1) through (7.2-6). The isolation of indi-

vidual elements is best achieved by starting with equation (7.2-6), and performing

necessary algebraic manipulations with appropriate cancellations and substitutions.

This procedure is repeated with equation (7.2-5), then (7.2-4), etc.. The results of this

isolation process is presented in Table 7-2.

Analysis of these six equations and the equations governing the tracker gains

reveals that the elements M 11, M 12 , and I 13 are key elements to solve for. As shown

in the Table 7-2, these elements are isolated in equations (7.2-7), (7.2-10), and (7.2-12)

which are now repeated.

ml =  A - r (7.2-7)

W r

12m? + T 2m (7.2-10)M11 = 24m 13

(m1 1 + (T/2)m1 2)2  T 5  (7.2-12)
mr 2 - 2T(mil +r) Si
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Table 7-2 Modified Filtered Error Covariance Equations

mI, = q- - r (7.2-7)

M33 =qT m12 + T2 (7.2-8)m3= M 13 I

qT(m 2 + Tm1 2m 13 + T 2m 3) (7.2-9)

2m -

mil= 12m2 + T 2m 6 (7.2-10)rn 11 - 2m 13

m2M22 = _qTjy(M IIM 12 +TM I M 13 + Tm?2

+ (3T 2/2)m 12m 13 + (5T 3/12)m A)

- rn 13 - (3T /2)m 23 - (T2/2)M33 (7.2-11)

M 2=(m I1I + (T/12)m 12) 2  aT5  (.-2
m12= 2T(ml, Tr) - (7.-12
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The three nonlinear equations and three unknowns can be solved for the m 13

element, resulting in a quartic equation with coefficients that are functions only of the

design parameters T, q, and r. The quartic equation governing m 13 is

rn -[Ib2/9+16c +b]m3 + [b2/9+6c]mA

+ [bc - C 1b2/9 +16C]M1 3 + C2=O (7.2-13)

where

b =qT412

c = qrT2

Using MACSYMA it is possible to solve this equation for the appropriate root of the

above quartic equation. The solution is given by

M144c + b2+3b + (7.214)

m1 1 2 36 N7
m - 12+ 333-----3332

+ "-- 36"6(b3+b2",l144c +b 2 + 18bc)d3/2 +(27b 144c +b 2 +33b 2)d - 11

where

z = 1458c3/2q729c + 2b 2 + 39366c 2 + 486b 2c + b4

y = 2b 2/3z2 3 + (9b 144c + b 2+11 b2)z 113 + b 1 3(648bc + 2b3)

d=z 113/y

Once element M 1 3 is evaluated, then elements m I, and M 12 are respectively

found from equations 7.2-7 and 7.2-10 as

m3
m 1 = y - r (7.2-7)
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M 12 = 42mn 13m I I - (T 2 / 1 2 ) m  3(7.2-15)

The remaining elements of the predicted error covariance matrix are found

from the equations in Table 7-2.

Once the key predicted error covariance elements m 1, m 12, and M 13 are

known, the gains for position ((x), velocity (1), and acceleration (y) can be determined.

Expanding the elements of the Kalman filter gain equation gives

K =[cx p ]

M i - (7.2-16)
inll+r

M1 +r12 (7.2-17)

mn13
M 13(7.2-18)

Expanding the elements of the Kalman filter filtered error covariance equation

results in

PH P12 P13]
P = P21 P22 P23

P31 P32 P33

Pit=(, cLmt11  (7.2-19)

P 12 = (I - )m 12  (7.2-20)

P13-= (I - a)m13 (7.2-21)

P2 2 
= -PM 12 + m22 (7.2-22)

P23 = -P3M 13 + Mn23 (7.2-23)

P 33 = -'P~n 13 + m33 (7.2-24)
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The above equations are easily calculated in a short program which allows the

user to input the design parameters T, q, r, and calculate all er-or covariances and gains

without having to exercise the Kalman filter equations until a steady state value is

achieved. In addition, as will be shown later, these equations provide a meaningful way

to perform a limiting analysis for the filter gains.

The equations for the predicted error covariance elements M 11, M 12 , and M 13 ,

and the filter gains ox, [3, and y were evaluated in a simple computational algorithm to

evaluate gain behavior graphically. Using the tracking index ( A2 = T4q /r ) defined by

Kalata [19841, plots are obtained for for ax, 0, and y versus A2. These plots are

presented in Figures 7-1 through 7-3. It should be noted that Kalata used a slightly

modified F matrix for his ox - P - y tracker, but the nature of the x versus A2 plots are

quite similar. In addition, three dimensional plots are presented that display aX, 3, and y

gain surfaces as a function of q and r. These results are presented in Figures 7-4

through 7-6 and correspond to T=10.

Examining Figures 7-1 through 7-6 reveals that the gains approach zero in the

limit as q approaches zero and r approaches o as expected. In addition, the gains

approach limiting values as q approaches o and r approaches zero. These limiting

values will now be examined with the aid of the closed form solution equations.
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Figure 7-4 Position Gain ((x) Surface (T 10ls)
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Figure 7-5 Velocity Gain (j)Surface (T 10ls)
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NX

Figure 7-6 Acceleration Gain (y) Surface (T 10ls)
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7.3 Limit Analysis

By examining the equation governing m 13 in the limit as r -* 0, provides the

limiting or maximum values for the gains cx, j0, and y. For the limiting case r --- 0, the

following relationships hold.

b T 4  c=0 d 1

z=b 4 y =24b 10 /3

M 13 2 qT4

- 7

7 + 4-3qT6m 37- J6

12 + 7 5
m 12 - 6- J 5

li%(I = 1

r-*

1i= (2.- )r T2

For T =10 which is the time period used in Figures 7-4 through 7-6

li%(x = I

lim3 0. 173

lin y 0.0 16

As can be seen in Figures 7-1 through 7-3, these are also the limiting values as

r approaches zero or the tracking index approaches +oo.
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7.4 Summary

This chapter details a means for calculating steady state gains and error covari-

ances for an a - 0 - y tracking filter. The results are given as a function of the meas-

urement and process noise covariances and the sampling period. Similar results were

obtained by Ramachandra [1987]. The results contained here in have been extended

with 3-dimensional surface graphs to depict gain behavior as a function of the process

and measurement noise levels. In addition the analysis is extended by performing a

limit analysis to determine the maximum gain values. This limit analysis proves to be

pertinent to the observer design methodology outlined in Chapter 5. solution allow
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CHAPTER 8
CONCLUSIONS, MAJOR CONTRIBUTIONS,

AND RECOMMENDATIONS

8.1 Conclusions

This work investigates a number of techniques and methodologies for improv-

ing and analyzing tracking filters. These techniques range from complex three dimen-

sional, six degree of freedom tracking filters that incorporate orientation measurements

to one dimensional, single degree of freedom tracking filters with position only meas-

urements. This wide range of techniques provides varying levels of insight into the

complex problem of tracking maneuvering aircraft.

The nonlinear analysis most closely represents potential tracking filter capabil-

ities. This analysis clearly shows the deficiencies of tracking filters implemented with

radar only measurements. A substantial improvement in tracking abilities is achieved

when orientation information is incorporated into the system dynamics and measure-

ment set. In addition, the necessity of tuning the process noise statistics is less sensitive

to the particular aircraft trajectory that is being followed. Also, the negative impact of

not having radar rates for measurements is offset by the inclusion of orientation meas-

urements.

The linear analysis addresses a key problem in tracking filter design. For any

estimator to achieve good estimation and prediction performance requires that the esti-

mator have access to the system's input. Without these inputs, estimation accuracy is

degraded. The problem of unknown inputs is fundamental to the tracking filter prob-

lem. The linear analysis investigates four methods to analyze this problem. First, a
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linear model that includes orientation information is presented. This filter, referred to

as an a - 5 tracking filter, shows that its performance in tracking an unknown step

input is clearly superior to the tracking performance of the ox - 0 - y tracking filter. In

addition, the a - 8 tracking is more robust in terms of process noise selection. These

conclusions are consistent with those found using the nonlinear tracking filter analysis.

The linear formulation of the orientation information also has the added benefit that

additional linear techniques such as Bode frequency domain analysis is possible.

Next, a combined frequency/time domain technique is used to analyze a gen-

eic system with unknown inputs. The technique is developed for both continuous and

discrete cases. Both cases lead to the conclusion that the estimator states should be

augmented with input states and exercised as a Kalman filter with infinite process noise

levels. This leads to a unity transfer function matrix between estimated and actual

inputs for the continuous case. The discrete case yields a one period time delay unity

transfer function matrix for estimated and actual inputs.

An error covariance analysis technique addresses error covariance behavior

between higher order and reduced order models. It is shown for both the continuous

and discrete cases, that the judicious selection of process nc.,se results in error covari-

ance equivalent models. Specifically, this analysis technique provides a means for

studying the effects of structural deficiencies for estimator models.

Finally, a linear analysis determines the steady state filter gains for a three

state tracking filter. The results lead to simplified equations for determining filter gains

and error covariances as a function of sampling time, process noise and measurement

noise levels. This is useful in determining asymptotic behavior of the gains as process

noise approaches infinity. This is important when implementing Fisher filters for sys-

tems with unknown exogenous inputs.
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8.2 Summary of Major Contributions

The nonlinear analysis examines a sophisticated six degree of freedom aircraft

model. This analysis extends previous research by estimating both the direction and

magnitude of the force system acting on the aircraft. The results demonstrate the

significant improvement that occurs when orientation information is used to supple-

ment standard trackers with radar only measurements. Additionally, an extensive sensi-

tivity study is performed to determine prediction accuracy robustness to modeling

complexity, process noise levels, effects of radar rate availability, and aircraft stability

derivative assumptions.

The linear analysis addresses a number of topics that result in new (to this

author's knowledge) methodologies and extensions or improvements to p,2vious

research results.

The linear models that incorporate orientation information were formulated

and developed by Andrisani [1985a, 1987]. These models were examined in terms of

their ability to track unknown inputs. The time domain analysis shown in Chapter 4

demonstrates the tracking improvement that is attained when orientation information is

used. The analysis also shows that the tracking filter with orientation information is far

less sensitive to the selection of process noise levels. These conclusions are consistent

with the results found using the nonlinear tracking filters. Given that these results are

consistent with the more extensive nonlinear models gives credence to their validity.

The design of observers with unknown exogenous inputs combines both fre-

quency domain and time domain techniques to improve the methodology for selecting

the observer gains and determining observer performance. The frequency domain

analysis provides the overall transfer function matrix (TFM) between observer esti-

mates of the inputs and the true values of the inputs. The TFM is based on a specific

observer implementation and the assumption of constant input dynamics, and is
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applicable for any arbitrary set of observer gains. Once the observer gains have been

selected, inverse transform methods can be used to determine observer input estimate

response. Whereas the general rule of thumb for observer gain selection is to ensure

that the observer poles are somewhat "faster" than the system poles [Luenberger;

19711, there is little guidance as to what the affect of a particular pole placement will

be on the observer performance. The development of the observer input estimate to

true input TFM provides a means for determining these effects. More importantly, it is

demonstrated that if the observer is implemented as a Kalman filter with infinite pro-

cess noise levels, the TFM simplifies to a unity matrix (with a time delay in the

discrete case). This implementation unfortunately yields a high bandwidth observer

which is susceptible to noise corruption. Therefore, it is suggested that the process

noise level be selected to achieve the proper balance between response time and noise

corruption.

The error covariance analysis provides a methodology for determining the

impact of variable model structures on Kalman filter performance. The continuous and

discrete analysis addresses dynamic models with upper triangular form for the dynam-

ics matrix. The continuous case yields a single matrix differential equation that

describes the error covariance difference that occurs between a higher order model

(HOM) and a reduced order model (ROM). The discrete case yields a single matrix

difference equation for both the filtered and predicted error covariances. The equations

may used in the performance of a sensitivity analysis or as shown herein, they provide

a means for achieving error covariance equivalent models.

The constant gain analysis for the three state a--'y tracking filter yields

closed form solutions for gain and error covariance determination as a function of pro-

cess and measurement noise levels and sampling period time. The determination of

these closed form solutions allows for analytical techniques to be applied for
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sensitivity analyses or as demonstrated herein, a limit analysis. The limit analysis

reveals that the particular selection of the input dynamics in the observer design with

unknown exogenous inputs is critical.

8.3 Recommendations

The linear methods were developed with generic system models to allow for a

wide range of applications. The application of these techniques should be explored

using other aerospace systems.

The system observer implemented as a Fischer filter could serve as an analytic

redundancy module in the fault detection and isolation procedures for aircraft control

inputs. The necessity of fast and accurate fault detection/isolation systems is impera-

tive for aircraft flight control systems being designed with the ability to reconfigure

control laws after the onset of a control failure.

The error covariance analysis procedure can also be used in observer/estimator

based flight control systems. Often these systems are modeled without the inclusion of

certain sensor and servo-actuator dynamics. The decision to include or remove these

dynamics can be made based on results of an error covariance analysis. If the decision

is made not to include these dynamics, appropriate modifications to the process noise

levels can be made.

An additional research topic, would be to explore a modified input matrix for

the three state discrete steady state gain analysis. Since using the input matrix of

chapter 7 does not yield a dead-beat response for system input estimation, performing a

similar analysis with an input matrix corresponding to an acceleration input would be

useful.
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